

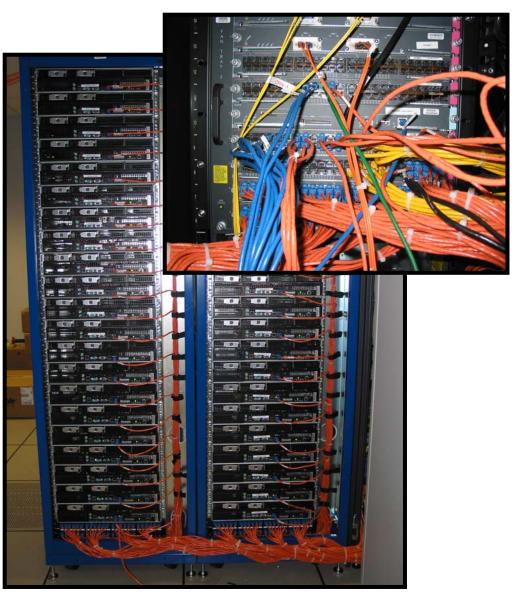
Using the Tier2 Facility at UF

Jorge L. Rodriguez Florida International University Southeastern CMS Physics Workshop

UFTier2 Computing Hardware

Computational Hardware

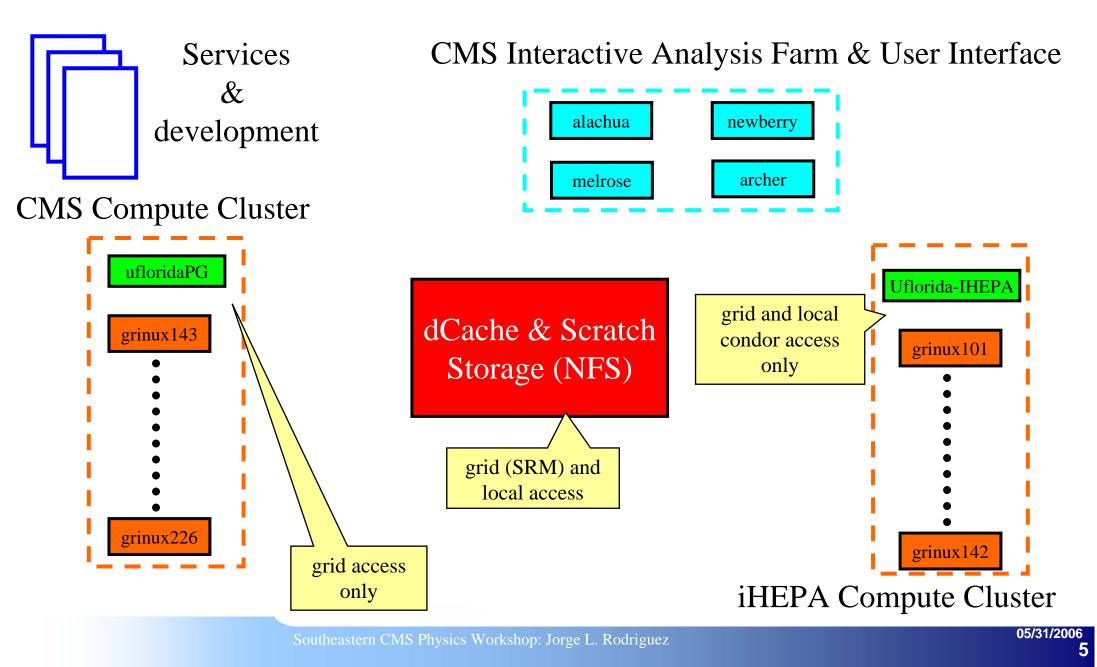
- 130 Dual dual-core (520 CPUs)
 - Opteron 275/280 (2.2/2.4 GHz), 4GB RAM, dual GigE NIC
 - 2 x (250 or 500) GB disks/node
- 740 kSpecInt2K


Storage Hardware

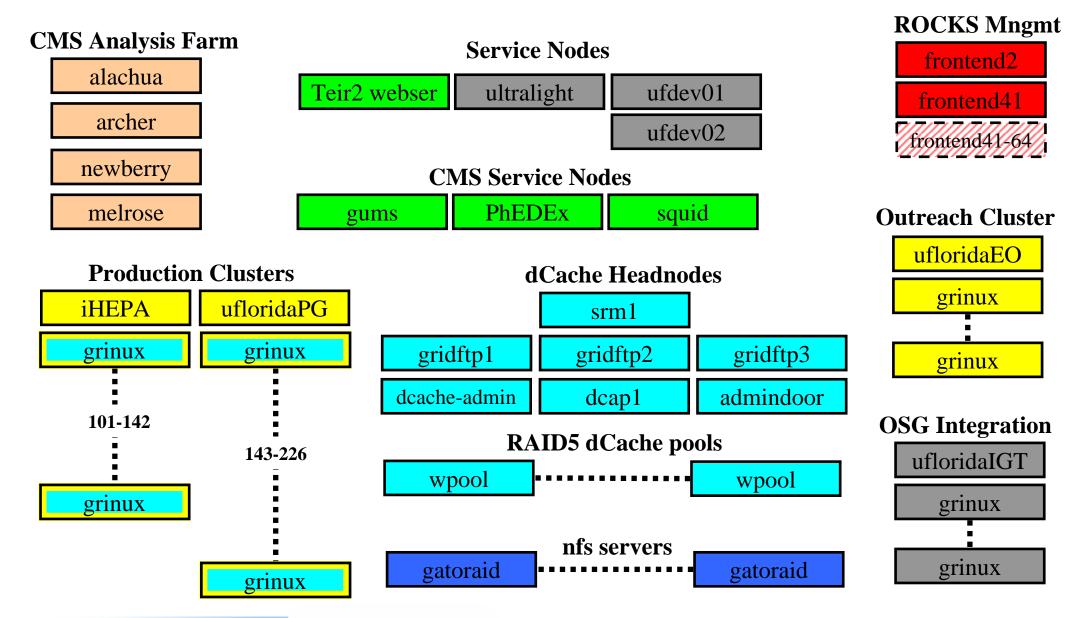
- 48 TB Hardware RAID
 - 30 TB in dCache RAID pools
 - Assigned to local users!
- 83 (37) TB on resilient dCache
 - One dCache pool/node (126 nodes)
 - For cmsdata, cmsprod & gusers
 - In production and available!

UFTier2 Networking

- Mostly a Cisco 6509
 - All 9 slots populated
 - 4 x 10 GigE ports (2 blades)
 - 288 x 1 GigE ports (6 blades)
 - Supervisor Engine Sup720
- Wan connectivity @ 10 Gbps
 - From out 6509 to CNS router @ 2 x 10 Gbps
 - Campus Research Network
 - Dedicated to UF research
 - From CNS router FLR over Ultralight wave @ 10 Gbps
 - All Tier2 public interfaces on Ultralight network

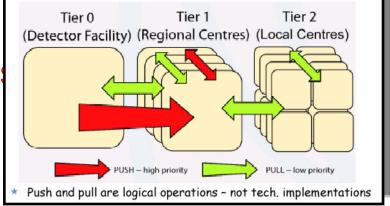

UFTier2 Hardware at t0

- Tier2 design specification
 - 1000 kSpecInt2K
 - Now at 75%, 110% if we include new HPC purchase
 - 200 TB of disk
 - Now at 60% in dCache more in local and NFS volumes
 - Soon will add more storage to resilient dCache
 - 10 Gbps connectivity to WAN
 - Campus Research Network
 - Tier2 network traffic does not compete with other campus traffic
- A sizable regional facility to be exploited

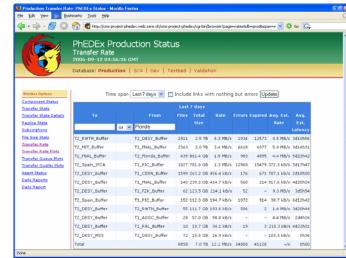

UFTier2 Configuration

The UF Tier2 Meta Cluster

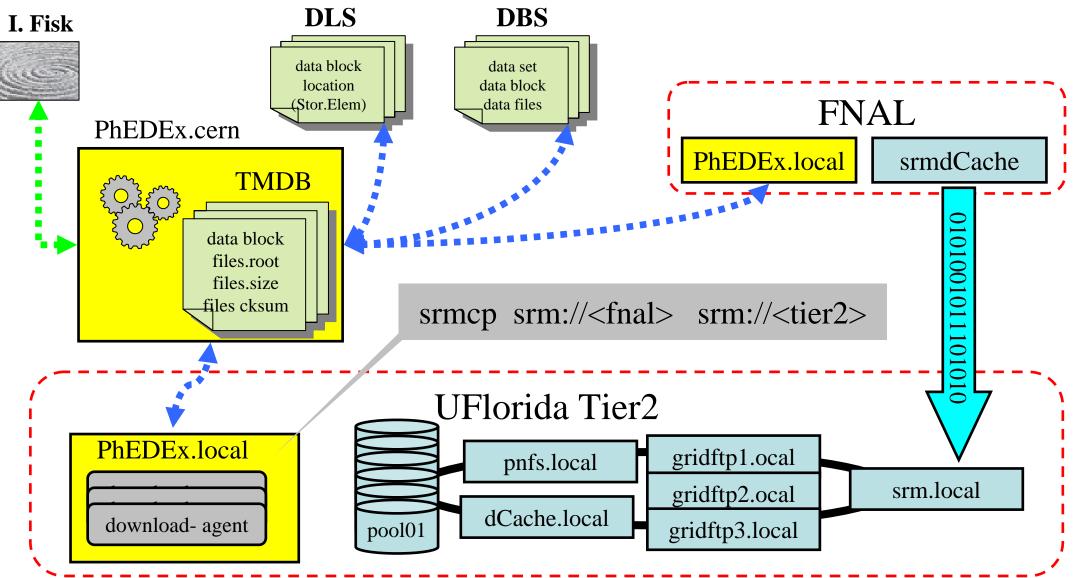
Services at the UFTier2


- Data movement, management and storage
 - dCache space: access via srm interface and local dccp
 - PhEDEX, DBS/DLS
 - Automated systems of downloading and publishing CMS data
 - Services fully tested and commissioned during CSA06
- User login and Grid Services
 - Interactive CMS Analysis Cluster: UNIX login
 - User Interfaces: grid access to OSG and LCG resources
 - Complete CMSSW installation
 - Deployed by cmssoft
 - Can be used to compile your CMS jobs
 - Webspace (~/public_html), twiki…

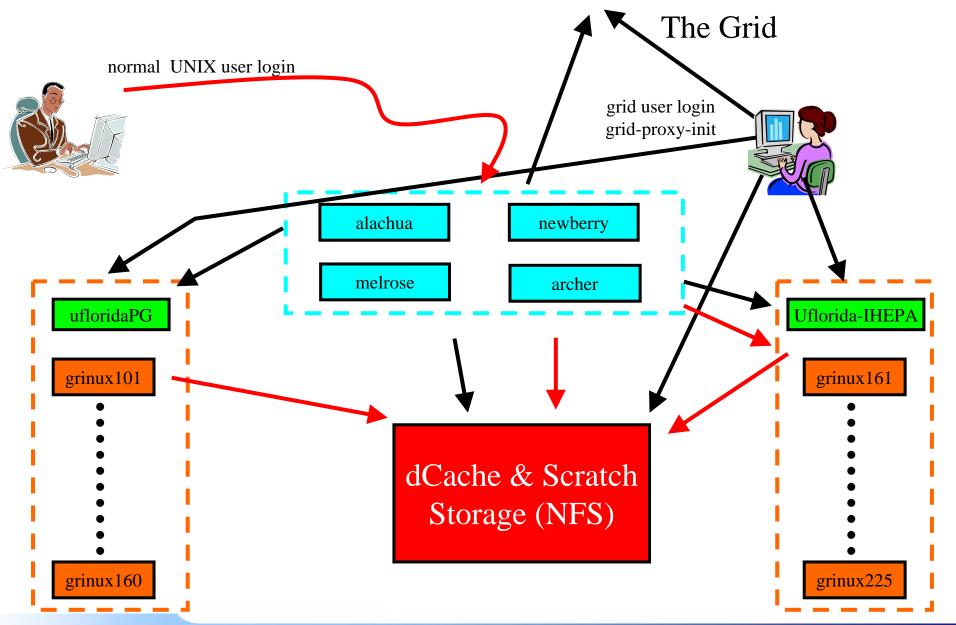
CMS Data Management System



Distributed Data Mgt & Movement System


- Identification & location of data
- Worldwide movement of data replica
 - Tier0 ⇔ Tier1 ⇔Tier2 ⇔Tier0…
 - − Volume ~ PBs \approx O(10 M) files
 - Transfer speeds ~ 5 Gb/s
- Components include
 - PhEDEx:
 - Hart of the system
 - DLS: Data location Service
 - DBS: Data Bookkeeping System

- Management at the block level (many files ~10TB)
- Monitoring


Data Mngmt & Movemnt System

USCMS

Accessing the Facility at UF

Accessing the Analysis Farm

- You can request a local UNIX account
 - Send email to <u>t2-admins@phys.ufl.edu</u>
 - Name, Institution, phone number and email
 - We recommend that you use ssh keys in lieu of passwords
- For the workshop you can login into analysis farm
 - Use the cmstutor account provided for you cmstutor@alachua(archer)(newberry)(melrose).phys.ufl.edu
 - A password will be issued but we prefer that you use your ssh keys
 - In principle a more secure way to login
 - With ssh agents and forwarding is much more convenient!

Computational Resources

CMS Analysis Farm at UF

- Interactive analysis, batch computing
- The CMSSW environment is installed there for you

[cmstutor@alachua cmstutor]\$ mkdir jorgeSpace [cmstutor@alachua cmstutor]\$ cd jorgeSpace [cmstutor@alachua jorgeSpace]\$ scramv1 project CMSSW

- CMS and Grid applications installed

- Use root.exe to analyze your data
- Use to run cmsRun interactively
- Use to submit cmsRun to local condor batch on the iHEPA cluster
- Can be used to launch jobs to the Grid and to move data via SRM

Storage Resources

- Home area: namespace: \$HOME
 - Entire partition is < 1.0TB & is shared by all users
 - Mounted (visible) via NFS on analysis farm nodes only
 - No space management, no backup, RAID 5 redundancy
 - Source code, other work but users are encouraged to backup their own data
- Scratch storage: namspace: /scratch/<cmsanal1(2)>/<uname>
 - Each partition is on a 250 GB hard drive
 - local and cross mounted on analysis farm nodes only
 - No space management, no backup, no redundancy whatsoever!
- NFS mounted storage: Namespace = /raid/raid1(2)(3)/<uname>
 - Partitions are larger from 500GB to 2.0 TBs
 - Mounted everywhere from the analysis farm nodes & workernodes
 - No space management, no backup, RAID 5 redundancy!
 - NFS can be un reliable and perform poorly under heavy load

What is dCache storage? from a user's point of view

- One giant disk (virtual filesystem)
- High performance, robust, reliable, expandable...
- A storage system designed to meet the needs of HEP experiments (CMS) in particular
- Various means of accessing the files
 - SRM: Storage Resource Manager
 - GSI authentication, VO level authorization
 - Managed storage (space reservation, request queuing...)
 - CMSSW
 - dCache is accessible from CMSSW framework
 - ROOT
 - There is a dCache xrootd implementation but its not implemented yet at UF
 - Auto mounted across all nodes via pNFS
 - POSIX like access to dCache but careful dCache is not POSIX!

- dCache area: namespace: RAID & resilient
 - dCache-RAID
 - dCache pools are mapped onto large RAID arrays
 - High bandwidth & fast I/O access to local disk
 - How to access:

from CMSSW: "dcap1.local:22135/pnfs/phys.ufl.edu/data/raid/... "

from shell: Is or dccp... /share/dcache/data/raid/... "

from srm: srmcp srm://srm1.phys.ufl.edu:8443/raid/...

This has not yet been enabled on RAID pools, also you'll need a grid certificate and authorization to use (t2-admins@phys.ufl.edu) from root: The xrootd feature has not yet been enabled at UF

- dCache area: namespace: RAID & resilient
 - dCache-resilient
 - dCache pools are scattered across all 126 workers
 - More efficient use of network topology for accessing files
 - Even higher bandwidth & faster I/O possible due to distributed nature of data storage
 - Access is just like previously with the RAID dCache space, other subdirectories include
 - .../data/resi (dccp accessible)
 - .../data/cmsuser (srmcp accessible)

Note: file permissions do not currently restrict access

dCache area: Summary

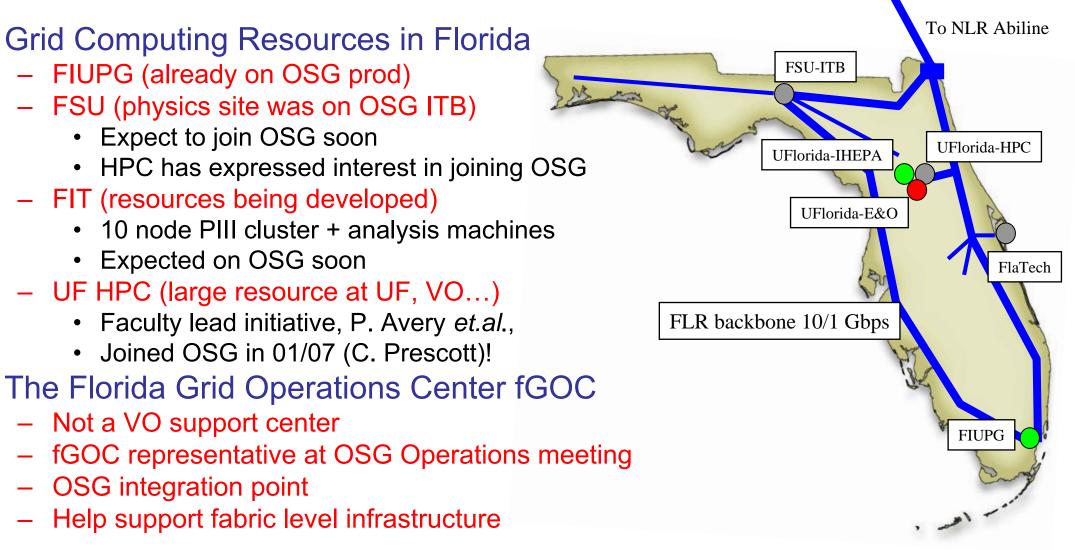
- UF dCache can do ~ 10-25 TB/day via SRM
- 30 TB available to local users as RAID pools
- 37 TB in resilient pools (shared, cmsprod...)
- Resource allocation: (t2-admin@phys.ufl.edu)
 - Large data samples via PHEDEX operator
 - Generate your own and dccp or write directly into RAID pools

Login to Tier2 for the Workshop

- There is an account (cmstutor) on:
 - alachua, archer, newberry, melrose .phys.ufl.edu
- password is :
- If you'd like to try ssh logins via agents let me know.
 - Its neat and secure
 - you only have to remember one password for all your accounts
- Once you are in type
 - create your space ie, jorgeSpace/
 - source /raid/raid4/analfarm/setup/setup.sh
- Follow the CMS Offline Workbook tutorials at <u>https://twiki.cern.ch/twiki/bin/view/CMS/WorkBook</u>

Using ssh with agents

A more secure and less troublesome way to login Procedure:


- 1. Generate priv/pub key pair (windows: puttygen)
 - save both to a file on your PC
 - install your public key on the target server cmstutor@alachua.phys.ufl.edu
- 2. Launch ssh agent (windows: pageant)
 - select your private key and type passphrase
 - use putty to login, you don't need to type your password again, furthermore you daisy chain to another host

END

Regional Grid Resources

A Developing Florida Grid

CMS