

Tatiana Pieloni, Felix Carlier and Simon White

EPFL-LPAP FCC-ee Software Framework Meeting - 20.05.2021

2

Accelerator Toolbox - AT

- The AT core was developed at SLAC by Andrei Terebilo
- Represents a collection of tools used to model storage rings and beam transport in MatLab (PyAT implementation for Python exists)
 - Creation and manipulation of storage ring lattice elements
 - Tracking particles
 - Compute accelerator and beam parameters
- GitHub: <u>https://github.com/atcollab/at</u>

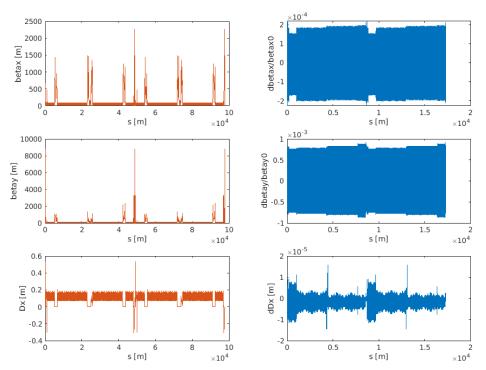
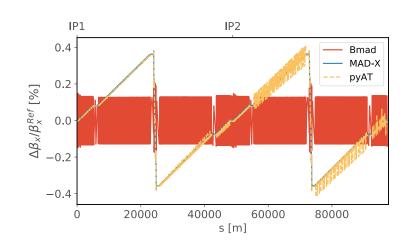
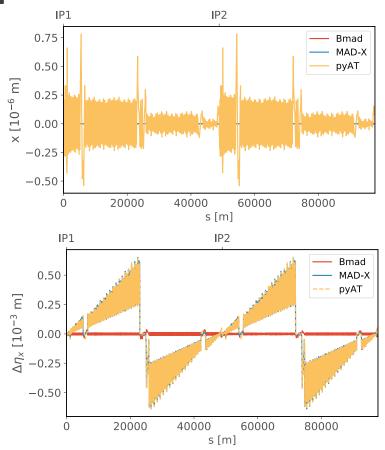


Figure 1: Comparison of the AT and MADX optics. Image credit: S. White.

Historical warmup

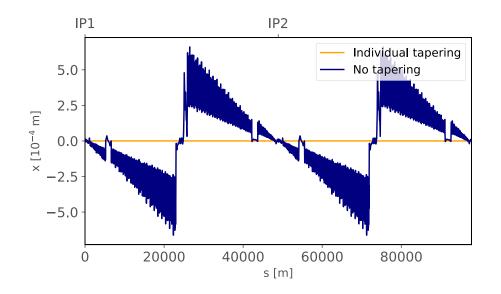
- Initially:
 - PyAT had no tapering implementation
 - PyAT had no feature of optics calculation with included synchrotron radiation
- Currently:
 - Individual tapering and optics with radiation were tested
 - Individual matching to 6D orbit
 - Looking at more simplified tapering for Higgs lattice


Developed by S.White


----->

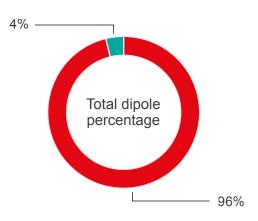
EPFL

Optics with radiation in PyAT


- Comparison with Bmad and MAD-X
- Perfect tapering scheme:
 - Good reproduction of optics functions
 - Need to improve the tapering for energy and hardware considerations
- Images source: <u>F. Carlier</u>

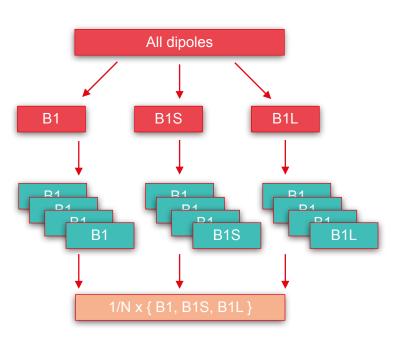
Perfect tapering in PyAT

Individual vs no tapering	$\Delta \epsilon_x$	$\Delta\eta_{_X}$	$rac{\Deltaeta}{eta^{Ref}}$	
IP1	1.905E-10	-4.919E-08	-3.6958E-05	
IP2	1.905E-10	-5.491E-08	-3.6959E-05	

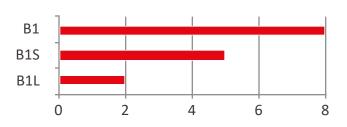

Milica Rakic

6

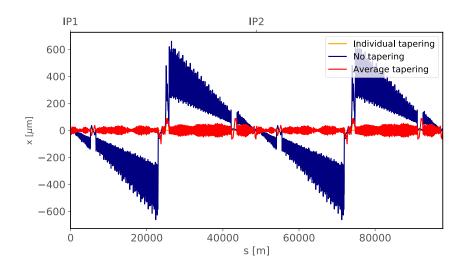
EPFL


First exploration of simplified tapering

- Identification of 100 microns figure of merit for maximum orbit (K.Oide)
- Identification of most important lattice families (supplied by K.Oide)
 - Main arc dipoles at sextupole-free sections B1
 - Main arc dipoles at long sextupole sections B1L
 - Main arc dipoles at short sextupole sections B1S
- All other dipole families were kept as are (e.g. dispersion suppressors, connecting arc, IP upstream and downstream)
- For B1, B1S and B1L average tapering was employed, all other dipoles received individual tapering


First exploration of simplified tapering

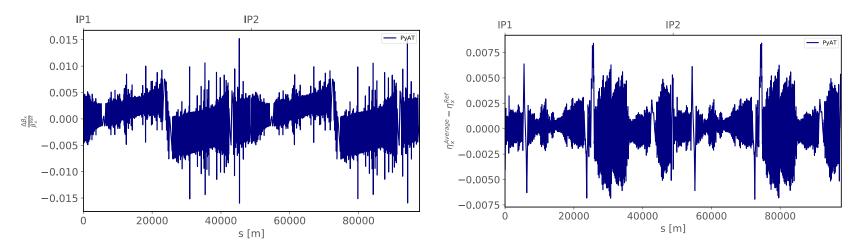
- Reasons for looking into simplified tapering:
 - Tapering of individual magnets is expensive
 - Successful simplified tapering for Higgs physics lattice can greatly reduce costs
 - Valuable input for future dipole magnet design phase
- Average tapering entailed:
 - Individual tapering of all dipoles, quadrupoles and sextupoles
 - Segmenting three main dipole families in 4 section based on RF and IP positions
 - Further segmentation into number-adjusted sub-families
 - Taking values from individual tapering and averaging them over sub-families
 - Applying obtained values to dipole strengths of chosen families



Simplified tapering for 50 micron orbit

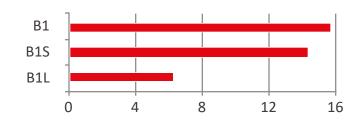
- Results on orbit and optics, given for different number of dipoles per one averaged group:
 - Average tapering for small number of dipoles per sub-family shows good results
 - Half arc splitting into around 100 sections

Number of dipoles per sub-family

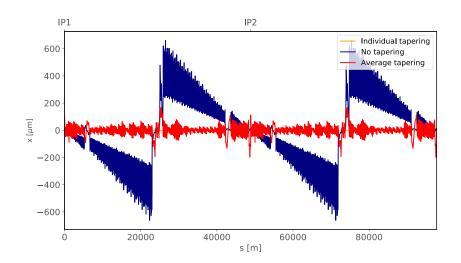


Milica Rakic

EPFL

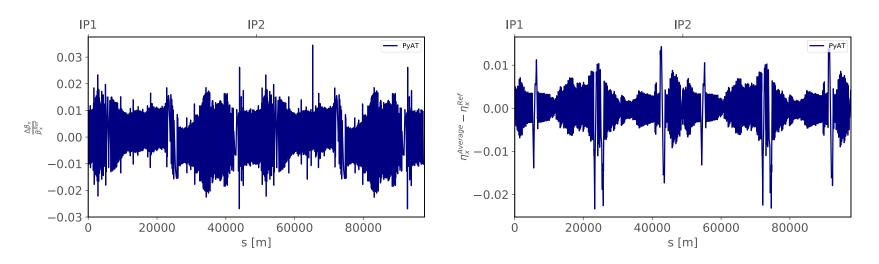

Simplified tapering for 50 micron orbit

- Results on orbit and optics, given for different number of dipoles per one averaged group:
 - Beta beating becomes more drastic
 - Half arc splitting into around 100 sections

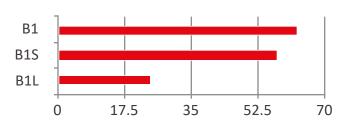


Simplified tapering for 100 micron orbit

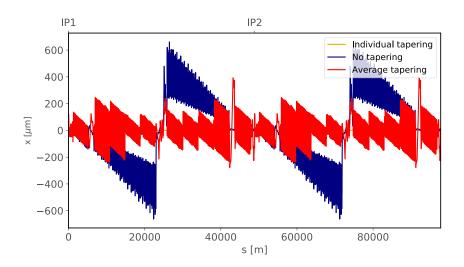
- Results on orbit and optics, given for different number of dipoles per one averaged group:
 - Half arc splitting into around 40 sections



Number of dipoles per sub-family

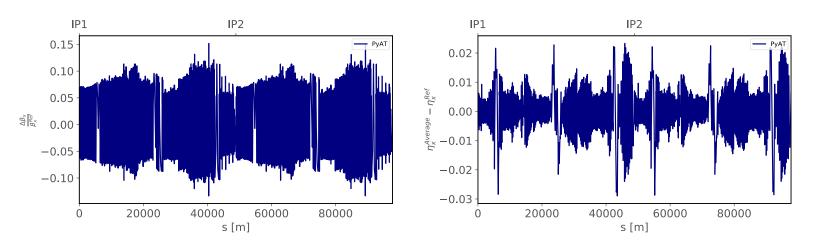

Simplified tapering for 100 micron orbit

- Results on orbit and optics, given for different number of dipoles per one averaged group:
 - Half arc splitting into around 40 sections
 - 10x increase in dispersion from 50 micron orbit
 - 2x increase in beta from 50 micron orbit



Simplified tapering for 200 micron orbit

- Results on orbit and optics, given for different number of dipoles per one averaged group:
 - Average tapering for larger amount of dipoles changes the picture
 - Half arc splitting into around 10 sections



Number of dipoles per sub-family

Simplified tapering for 200 micron orbit

- Results on orbit and optics, given for different number of dipoles per one averaged group:
 - Half arc splitting into around 10 sections
 - 2x increase in dispersion from 100 micron orbit
 - 10x increase in beta from 100 micron orbit
 - Need for rematching the optics and correction of dispersion (next steps in future studies)

First exploration of simplified tapering

Statistics:

	Number of dipoles per sub-family		$\epsilon_{_{\chi}}$		$rac{\Deltaeta}{eta^{Ref}}$		$\Delta \eta_x$		
	B1	B1S	B1L	Average	Individual	IP1	IP2	IP1	IP2
50 µm	6	5	2	6.583E-10	6.295E-10	3.7243E-03	3.7244E-03	1.39E-04	1.35E-04
100 µm	16	14	6	9.547E-10	6.295E-10	9.61E-03	9.62E-03	5.25E-05	6.56E-05
200 µm	63	58	25	6.348E-10	6.295E-10	1.652E-02	1.651E-02	6.15E-04	6.17E-04

Milica Rakic

15

Conclusion

- Current PyAT developments:
 - Successful tapering
 - Successful implementation of optics calculations with synchrotron radiation (reference E.Forest)
 - Focusing on further exploring:
 - Optics function degradation below 15%
 - Large distortion of dispersion function
- Moving on:
 - Preforming the matching (optimisation) for the dipoles using averaged state as initial condition
 - Performing orbit optimisation with orbit correctors
 - Rematching optics after alternative tapering scheme

EPFL