# Tetrafluoropropene-based gas mixtures for Resistive Plate Chambers:

an experimental and simulation study

**Antonio Bianchi** 

(CERN) antonio.bianchi@cern.ch

# Outline

#### Search of environment-friendly gas mixture for RPCs

- experimental approach
- simulation approach







### Characterization with ALICE mixture

Efficiency and streamer probability with ALICE mixture, which is used as reference:



- efficiency (FEERIC response):
  Q<sub>induced</sub> = ~130 fC (70 mV after amplification)
- streamer probability:
  amplitude (by the oscilloscope) > 18 mV
  (threshold used to tag 5% largest signals)

The 2-mm gap RPC is horizontally placed and exposed to the cosmic-ray flux

amplitude (mV)

Systematic study: gas mixtures with C<sub>3</sub>H<sub>2</sub>F<sub>4</sub> and CO<sub>2</sub> has been carried out with the addition of *i*-C<sub>4</sub>H<sub>10</sub> and SF<sub>6</sub> Methodology: changing the fractions of two gas components out of four at a time, evaluating how their ratio affects the performance of the RPC → more details: A. Bianchi *et al.* 2019 *JINST* **14** P11014

### Ratio between C<sub>3</sub>H<sub>2</sub>F<sub>4</sub> and CO<sub>2</sub>/*i*-C<sub>4</sub>H<sub>10</sub>





If the fraction of  $C_3H_2F_4$  is increased and  $CO_2$  or i- $C_4H_{10}$  is decreased:

- the working point turns out to be shifted towards higher voltages
- no significant variation on the streamer probability





Strong dependence between the concentration of  $C_3H_2F_4$  and the working point

### Ratio between CO<sub>2</sub> and *i*-C<sub>4</sub>H<sub>10</sub>





streamer probability





- The working point does not vary monotonically
- Streamer probability is very similar in all cases, with the possible exception of 15% *i*-C<sub>4</sub>H<sub>10</sub>
- The reduction of i-C<sub>4</sub>H<sub>10</sub> (flammable) is desirable for safety and practical reasons, but it seems that reducing i-C<sub>4</sub>H<sub>10</sub> would result in less steep turn-on of the efficiency, which is a drawback

# Variation of SF<sub>6</sub>



30

20

10

A. Bianchi et al. 2019 JINST 14 P11014

A small variation on the concentration of SF<sub>6</sub> leads to an important effect on the working point: the shift of the working point is ~500 V from 0.3% to 1.0% SF<sub>6</sub>

No significant variations in the streamer probability are observed if SF<sub>6</sub> is increased from 0.3% to 0.6%, while the suppression of streamers is slightly higher with 1.0% SF<sub>6</sub>

800 1000

 $HV - HV_{\varepsilon=0.9}(V)$ 

### Promising gas mixtures with low GWP





Mixture  $C_2H_2F_4/iC_4H_{10}/SF_6$  (89.7/10.0/0.3):

- efficiency
- streamer probability

Mixture  $CO_2/C_3H_2F_4/iC_4H_{10}/SF_6$  (50.0/39.7/10.0/0.3):

- efficiency
- streamer probability

Mixture  $CO_2/C_3H_2F_4/iC_4H_{10}/SF_6$  (50.0/39.0/10.0/1.0):

- efficiency
- streamer probability

#### 50% CO<sub>2</sub>, 39.7% C<sub>3</sub>H<sub>2</sub>F<sub>4</sub>, 10% *i*-C<sub>4</sub>H<sub>10</sub>, 0.3% SF<sub>6</sub>:

- GWP: 72 (~20 times lower than the GWP of ALICE mixture)
- the working point is quite close to the working point of the ALICE RPCs during LHC Run 1 and Run 2 (~1.0 kV)
- the streamer probability is not as low as in the current ALICE mixture

#### 50% CO<sub>2</sub>, 39% C<sub>3</sub>H<sub>2</sub>F<sub>4</sub>, 10% *i*-C<sub>4</sub>H<sub>10</sub>, 1% SF<sub>6</sub>:

- GWP: 232 (~5 times lower than the GWP of ALICE mixture)
- the working point is higher (~1.5 kV)
- the streamer probability is similar to the ALICE mixture, although slightly higher
- → in both cases, values of cluster size are similar to those obtained with the ALICE mixture
- → more details in: A. Bianchi et al. 2019 JINST 14 P11014

# Simulations of RPC performance

Reliable simulations of electron transport parameters in C<sub>3</sub>H<sub>2</sub>F<sub>4</sub>-based gas mixtures turn out to be

extremely useful to **optimize** the RPC performance, but also for:

- different experiments with different operational conditions (ATLAS/CMS or ALICE)
- different types of RPCs and other gaseous detectors (i.e. GEM)

 $10^{-1}$ 

10

A. Bianchi et al., 2021, arXiv: 2103.08643

energy (eV)

Numeric solvers or Monte Carlo simulations **Boltzmann** electron collision transport cross sections equation cross sections (m<sup>2</sup>) elastic ionization excitation Inverse problem 10<sup>-21</sup> Three-body electron  $10^{-22}$ attachment



transport coefficients and reaction rates



ETH Zurich: A. Chachereau *et al.*, 2016 *Plasma Sources* Sci. Technol. **25** 045005

Electron collision cross sections of C<sub>3</sub>H<sub>2</sub>F<sub>4</sub> are obtained by unfolding its electron swarm parameters

# Results of simulation

Variation of the ratio between  $C_3H_2F_4$  and  $CO_2$  without i- $C_4H_{10}$  and with 20% i- $C_4H_{10}$ :



Variation of the ratio between CO<sub>2</sub> and *i*-C<sub>4</sub>H<sub>10</sub> while C<sub>3</sub>H<sub>2</sub>F<sub>4</sub> fraction is kept constant at 45%:



### Results of simulation

Variation of the ratio between CO<sub>2</sub> and **Ar** with 45% C<sub>3</sub>H<sub>2</sub>F<sub>4</sub> and 5% *i*-C<sub>4</sub>H<sub>10</sub>:

**REFF** simulation

experimental data REFF simulation



Mixture  $C_3H_2F_4/CO_2/iC_4H_{10}$  (45.0/50.0/5.0):

- experimental data
- REFF simulation

Mixture  $C_3H_2F_4/CO_2/iC_4H_{10}/Ar$  (45.0/45.0/5.0/5.0):

- experimental data
- REFF simulation

Mixture  $C_3H_2F_4/CO_2/iC_4H_{10}/Ar$  (45.0/40.0/5.0/10.0):

- experimental data
- REFF simulation

Gas mixtures with C<sub>3</sub>H<sub>2</sub>F<sub>4</sub>, *i*-C<sub>4</sub>H<sub>10</sub> and **He**:



Good results are also obtained with gas mixtures of C<sub>3</sub>H<sub>2</sub>F<sub>4</sub>, CO<sub>2</sub> and **O<sub>2</sub>** 

Experimental data by M. Abbrescia et al., 2016, JINST P08019: Discrimination threshold of ~300 fC while it was ~130 fC in the previous cases

# Conclusions and outlook

#### • R&D on eco-friendly gas mixtures:

- → goal: to have a eco-friendly gas mixture (at least with a low GWP)
- → C<sub>3</sub>H<sub>2</sub>F<sub>4</sub> is a possible candidate to substitute C<sub>2</sub>H<sub>2</sub>F<sub>4</sub>, thanks to its low GWP



#### Characterization of mixtures with C<sub>3</sub>H<sub>2</sub>F<sub>4</sub>:

- strong dependence between the working point of the detector and the concentration of C<sub>3</sub>H<sub>2</sub>F<sub>4</sub>
- direct replacement of C<sub>2</sub>H<sub>2</sub>F<sub>4</sub> with C<sub>3</sub>H<sub>2</sub>F<sub>4</sub> is not suitable (working point > 14 kV) → the addition of CO<sub>2</sub> to C<sub>3</sub>H<sub>2</sub>F<sub>4</sub>-based gas mixtures is required to operate at lower voltages
- promising C<sub>3</sub>H<sub>2</sub>F<sub>4</sub>/CO<sub>2</sub>-based mixtures with *i*-C<sub>4</sub>H<sub>10</sub> and SF<sub>6</sub>:
  GWP reduced by a factor 5-20 (A. Bianchi *et al.* 2019 *JINST* 14 P11014 and A. Bianchi *et al.*, 2020 *JINST* 15 C04039)

#### Simulation of RPC efficiency:

- set of electron collision cross sections of C<sub>3</sub>H<sub>2</sub>F<sub>4</sub>
  (A. Bianchi et al., 2021, arXiv: 2103.08643)
- reliable predictions of the RPC efficiency in
  C<sub>3</sub>H<sub>2</sub>F<sub>4</sub>-based gas mixtures with the addition
  of *i*-C<sub>4</sub>H<sub>10</sub>, CO<sub>2</sub>, O<sub>2</sub>, Ar, He
  - (A. Bianchi et al 2020 JINST 15 C09006)
- future developments of our simulation, including space charge effects, with the aim to evaluate the streamer probability, cluster size, etc.

