Tetrafluoropropene-based gas mixtures for Resistive Plate Chambers: an experimental and simulation study **Antonio Bianchi** (CERN) antonio.bianchi@cern.ch # Outline #### Search of environment-friendly gas mixture for RPCs - experimental approach - simulation approach ### Characterization with ALICE mixture Efficiency and streamer probability with ALICE mixture, which is used as reference: - efficiency (FEERIC response): Q_{induced} = ~130 fC (70 mV after amplification) - streamer probability: amplitude (by the oscilloscope) > 18 mV (threshold used to tag 5% largest signals) The 2-mm gap RPC is horizontally placed and exposed to the cosmic-ray flux amplitude (mV) Systematic study: gas mixtures with C₃H₂F₄ and CO₂ has been carried out with the addition of *i*-C₄H₁₀ and SF₆ Methodology: changing the fractions of two gas components out of four at a time, evaluating how their ratio affects the performance of the RPC → more details: A. Bianchi *et al.* 2019 *JINST* **14** P11014 ### Ratio between C₃H₂F₄ and CO₂/*i*-C₄H₁₀ If the fraction of $C_3H_2F_4$ is increased and CO_2 or i- C_4H_{10} is decreased: - the working point turns out to be shifted towards higher voltages - no significant variation on the streamer probability Strong dependence between the concentration of $C_3H_2F_4$ and the working point ### Ratio between CO₂ and *i*-C₄H₁₀ streamer probability - The working point does not vary monotonically - Streamer probability is very similar in all cases, with the possible exception of 15% *i*-C₄H₁₀ - The reduction of i-C₄H₁₀ (flammable) is desirable for safety and practical reasons, but it seems that reducing i-C₄H₁₀ would result in less steep turn-on of the efficiency, which is a drawback # Variation of SF₆ 30 20 10 A. Bianchi et al. 2019 JINST 14 P11014 A small variation on the concentration of SF₆ leads to an important effect on the working point: the shift of the working point is ~500 V from 0.3% to 1.0% SF₆ No significant variations in the streamer probability are observed if SF₆ is increased from 0.3% to 0.6%, while the suppression of streamers is slightly higher with 1.0% SF₆ 800 1000 $HV - HV_{\varepsilon=0.9}(V)$ ### Promising gas mixtures with low GWP Mixture $C_2H_2F_4/iC_4H_{10}/SF_6$ (89.7/10.0/0.3): - efficiency - streamer probability Mixture $CO_2/C_3H_2F_4/iC_4H_{10}/SF_6$ (50.0/39.7/10.0/0.3): - efficiency - streamer probability Mixture $CO_2/C_3H_2F_4/iC_4H_{10}/SF_6$ (50.0/39.0/10.0/1.0): - efficiency - streamer probability #### 50% CO₂, 39.7% C₃H₂F₄, 10% *i*-C₄H₁₀, 0.3% SF₆: - GWP: 72 (~20 times lower than the GWP of ALICE mixture) - the working point is quite close to the working point of the ALICE RPCs during LHC Run 1 and Run 2 (~1.0 kV) - the streamer probability is not as low as in the current ALICE mixture #### 50% CO₂, 39% C₃H₂F₄, 10% *i*-C₄H₁₀, 1% SF₆: - GWP: 232 (~5 times lower than the GWP of ALICE mixture) - the working point is higher (~1.5 kV) - the streamer probability is similar to the ALICE mixture, although slightly higher - → in both cases, values of cluster size are similar to those obtained with the ALICE mixture - → more details in: A. Bianchi et al. 2019 JINST 14 P11014 # Simulations of RPC performance Reliable simulations of electron transport parameters in C₃H₂F₄-based gas mixtures turn out to be extremely useful to **optimize** the RPC performance, but also for: - different experiments with different operational conditions (ATLAS/CMS or ALICE) - different types of RPCs and other gaseous detectors (i.e. GEM) 10^{-1} 10 A. Bianchi et al., 2021, arXiv: 2103.08643 energy (eV) Numeric solvers or Monte Carlo simulations **Boltzmann** electron collision transport cross sections equation cross sections (m²) elastic ionization excitation Inverse problem 10⁻²¹ Three-body electron 10^{-22} attachment transport coefficients and reaction rates ETH Zurich: A. Chachereau *et al.*, 2016 *Plasma Sources* Sci. Technol. **25** 045005 Electron collision cross sections of C₃H₂F₄ are obtained by unfolding its electron swarm parameters # Results of simulation Variation of the ratio between $C_3H_2F_4$ and CO_2 without i- C_4H_{10} and with 20% i- C_4H_{10} : Variation of the ratio between CO₂ and *i*-C₄H₁₀ while C₃H₂F₄ fraction is kept constant at 45%: ### Results of simulation Variation of the ratio between CO₂ and **Ar** with 45% C₃H₂F₄ and 5% *i*-C₄H₁₀: **REFF** simulation experimental data REFF simulation Mixture $C_3H_2F_4/CO_2/iC_4H_{10}$ (45.0/50.0/5.0): - experimental data - REFF simulation Mixture $C_3H_2F_4/CO_2/iC_4H_{10}/Ar$ (45.0/45.0/5.0/5.0): - experimental data - REFF simulation Mixture $C_3H_2F_4/CO_2/iC_4H_{10}/Ar$ (45.0/40.0/5.0/10.0): - experimental data - REFF simulation Gas mixtures with C₃H₂F₄, *i*-C₄H₁₀ and **He**: Good results are also obtained with gas mixtures of C₃H₂F₄, CO₂ and **O₂** Experimental data by M. Abbrescia et al., 2016, JINST P08019: Discrimination threshold of ~300 fC while it was ~130 fC in the previous cases # Conclusions and outlook #### • R&D on eco-friendly gas mixtures: - → goal: to have a eco-friendly gas mixture (at least with a low GWP) - → C₃H₂F₄ is a possible candidate to substitute C₂H₂F₄, thanks to its low GWP #### Characterization of mixtures with C₃H₂F₄: - strong dependence between the working point of the detector and the concentration of C₃H₂F₄ - direct replacement of C₂H₂F₄ with C₃H₂F₄ is not suitable (working point > 14 kV) → the addition of CO₂ to C₃H₂F₄-based gas mixtures is required to operate at lower voltages - promising C₃H₂F₄/CO₂-based mixtures with *i*-C₄H₁₀ and SF₆: GWP reduced by a factor 5-20 (A. Bianchi *et al.* 2019 *JINST* 14 P11014 and A. Bianchi *et al.*, 2020 *JINST* 15 C04039) #### Simulation of RPC efficiency: - set of electron collision cross sections of C₃H₂F₄ (A. Bianchi et al., 2021, arXiv: 2103.08643) - reliable predictions of the RPC efficiency in C₃H₂F₄-based gas mixtures with the addition of *i*-C₄H₁₀, CO₂, O₂, Ar, He - (A. Bianchi et al 2020 JINST 15 C09006) - future developments of our simulation, including space charge effects, with the aim to evaluate the streamer probability, cluster size, etc.