Searches for CF4 replacement for the CSC gas mixture

K. Kuznetsova (UF/PNPI) for the CMS CSC group

CF4 in the CSC gas mixture

- CMS CSC nominal gas mixture: 40% Ar + 50% CO2 + 10% CF4
 - CF4: protection against anode ageing
 - In such a small quantity CF4 does not change significantly the properties of the Ar/CO2 mixture => the presence of CF4 provides longevity only
- CF4 a source of fluorine radicals
 - + protects against Si-based depositions : Si/SiO2+4F→ SiF4 (+O2)
 - + protects against polymer film formation (in presence of oxygen radicals)
 - in a large quantity may cause wire "corrosion"
- Practical experience of CF4 usage in MWPC gas mixtures is well systematized

(for example, overview by Mar Capeans here)

• CF4 is widely used in plasma etching of Si/SiO2 wafers and polymer films – more theoretical knowledge and even simulations are available, however for the specific conditions (pressure, energies, flows etc)

CF4 - do we need it in CSC?

Pre-construction studies with CMS CSC prototypes of early design (Si-containing material in contact with gas volume, not present in the final CSC design) – rapid gain drop under irradiation for Ar/CO2 mixture and no significant degradation and no anode wire deposition up to at least 12 C/cm for Ar/CO2/10%CF4

Recent systematic studies with 10, 5, 2, 0 %CF4 (open loop gas supply) and small CSC prototypes
 ("miniCSC") of original design, up to 0.24 C/cm (~ 2 Q(HL-LHC)) – no performance degradation in all
 cases but: anode wires irradiated with 0 and 2 %CF4 have visible carbon-containing deposits

22/04/21

On the way to a more eco-friendly gas mixture

From the studies with different CF4 fractions (details in Gabriella's talk):

 Preliminarily it seems to be safe to operate the CSC with 5% CF4 – a reduction of factor two with respect to the current gas mixture (the studies still ongoing)

- It is risky to operate the CSC with too low concentration of F-radicals (as we see with 2% and 0% CF4) we can not reduce CF4 fraction further but
 - we can investigate if there is an eco-friendly replacement for CF4

searches for CF4 replacement

$GWP(CF4) \sim 7000$

As a potential CF4 replacement we need an F-containing gas

- with low GWP
- that is not hazardous
- that prevents ageing in CSC
 where here we mean it has deposit-removal properties.

There are a lot of studies of efficient Si/SiO2/polymer etching in the context of industrial plasma etching but they are not limited to non-hazardous gases

However we can use their experience on selecting gases basing on **F/C ratio.** We use it as a hint only, since we do not know if we can apply it directly to an MWPC case

Philip D. Rack University of Tennessee

searches for CF4 replacement - general considerations

Searched through ~200 gases requiring GWP < O(500):

perfluocarbons (CxFy), hydrofluorocarbons (CxHyFz), hydrochlorofluorocarbons (CzHyClkFz), hydrofluoroethers (R-O-R')

Not examined yet:

fluoroamins, phosphorus halides (mostly toxic...), F-ketons (R2C=O), etc.

Did not consider long molecules : N(C-C)<6

Rejecting flammable and toxic gases, compounds with high boiling point...

to be considered in more details

At the moment we stay with four gases of interest:

- **CF3I** (GWP<1) **excluded** in 2015 since too electronegative (+toxic)
- Hydroflueroolefines (HFC with a double C=C bond) :
 - HFO-1234ze (GWP=7) intensively studied for RPC
 does contain F, but F:C ratio is not optimal (4:3)

- **HFO-1336mzz(E)** (GWP=18)
 - better F:C ratio (6:4)
 - but longer molecular chain

studies

ongoing

- Hydrochlorofluerocarbons (HCFC) HCFC-1233zd(E) under study by ATLAS-RPC (<u>presented at RPC-2020</u>) - also a replacement of SF6
 - poor F:C ratio (3:3) + chlorine containing
 - probably of low interests for CSC
- Hydroflueroethers (HFE, R-O-R') HFE-245fa1 (5:3) and HFE-143m (3:2) GWP~700
 - contain oxygen
 - listed in <u>JINST13 P03012</u> as being of potential interest for gas detectors

HFO-1234ze - performance studies with miniCSC

Studies to be continued - more dedicated measurements with different HFO fractions with a miniCSC and finally with an original CSC at test beams

22/04/21

HFO-1234ze - longevity studies

Accelerated longevity studies (PNPI) - "relatively promising"

+ no gain degradation up to 1.2 C/cm

Accumulated dose, mC/cm

- significant increase in dark current after 0.6 C/cm

Accumulated dose, mC/cm

Longevity studies at PNPI (G.Gavrilov)

Physics of Atomic Nuclei, Volume 83, Issue 10, p.1449-1458 (2020)

electrode surface analyses are ongoing

Assuming the extra-current coming from the irradiation spot of ~2 cm diameter:

10 nA from 4 cm of the two wires - scaled to
200 m of ME2/1s1 wires give 50 uA (~ 3 times larger than expected current from the HL-LHC collisions)

Studies will be repeated with a lower ageing acceleration factor

Summary

- Currently four gases are preselected for further studies: HFO1234ze, HFO-1336mzz(E) and HFE-245fa1, HFE-143m
 - Studies of **HFO1234ze** are ongoing, very preliminary results are relatively promising
 - At the moment it is not obvious if HFO1234ze can be used as a CF4 replacement (long molecular chain, low F/C ratio)
 - More performance and longevity studies are required
 - Performance b904 (miniCSC) and GIF++ (ME1/1add with muon beam)
 - Longevity at least one miniCSC longevity test (b904 and/or GIF++), probably several tests with different fractions of HFO

 If available (not checked yet), HFO-1336mzz(E), HFE-245fa1 and HFE-143m should be studied as well

systematic studies with different CF4 fractions

miniCSC tests:

10% CF4: irradiated up to \sim 1.2 C/cm - no gas gain reduction; dark current increase after Q>0.32 C/ cm without degradation of detection performance; no visible deposits on wires

5-0% CF4: irradiated up to \sim 0.3 C/cm

5% CF4: showed stable performance, no significant visible deposits on wires

0-2% CF4: stable performance, visible darkening of wires - risky

0% CF4 in past (*RTV sealant in contact with the gas volume*): **significant deterioration in performance**, significant polymerization on wires. However, longevity tests for that chamber design performed with 10 and 20 %CF4 showed no anode ageing up to at least 12 C/cm

<u>Large CSC tests at GIF++ with 2% C</u> although some risk):

up to now +0.27 C/cm accumulated: Fig. 13. Gas gain ratio aim to collect at least +0.44 C/cm by mid-

5 S

Ure

Ar/CO2/CF4: drift velocity

Magboltz prediction of the drift time

 $https://indico.cern.ch/event/715570/contributions/2941648/attachments/1620189/2577316/CMS_V_drift.pdf$

searches for CF4 replacement

 Most of (hydro)fluorocarbons with relatively short chains and relatively low GWP (<500) are toxic or flammable...

Exception - CF3I

 Molecules with long chain may tend to polymerize, i.e. may cause anode/cathode ageing

(spuoc
ngle k
(Sil
HFC

_					
			GWP	F:C ratio	remarks
	Carbonyl fluoride	COF2	1	2:1+0	extremely tioxic
	Trifluoroiodomethane	CF3I	0.4	3:1	tried, electronegative
Halon-1202	CAS: 75-61-6	CBr2F2	231	2:1	Irritant; bp=26°C;
Halon-2311	CAS: 151-67-7	C2HBrClF3	41	3:2+Cl	Irritant, toxic. bp=53°C;
HFC-41	Fluoromethane	CH3F	92	1:1	F
HFC-143	1,1,2-Trifluoroethane	CHF2-CH2F	353?	3:2	ExtF
HFC-152	1,2-Difluoroethane	CH2F-CH2F	53	2:2	toxic; bp=31°C
HFC-152a	1,1-Difluoroethane	CHF2-CH3	124	2:2	ExtF; toxic??
HFC-161	Fluoroethane	CH2F-CH3	12	1:2	ExtF
HFC-263fb	1,1,1- Trifluoropropane	CH3-CH2- CF3	76	3:3	F
HFC-272ca	2,2-Difluoropropane	CH3-CF2- CH3	144	2:3	
	-				

- GWP(CF4) = 7390
- all perfluorated gas compounds except CF3I have larger GWP
- only HFC/HCFC/HFE with GWP < 500 are listed
- Fluorinated alcohols not included due to -OH group
- Flammability (may be different in different systems):
 - F=flammable, HiF=highly flammable, ExtF=extremely flammable

Increasing chain length

searches for **CF4** replacement

				GWP	F:C ratio	remarks
	HFC-1132a	Vinylidene fluoride	CH2=CF2	<1	2:2	ExtF, toxic
	HFC-1141	Vinyl fluoride	CH2=CHF	<1	1:2	ExtF
	HFC- 1225ye	1,2,3,3,3- Pentafluoropropene	CF3CF=CHF	<1	5:3	Irritant
(pu	HFC-1234yf	2,3,3,3- Tetrafluoroprop-1- ene	CH2=CF- CF3	4	4:3	F
HFO (a double bond)	HFC- 1234ze(E)	trans-1,3,3,3- Tetrafluoroprop-1- ene	CHF=CH- CF3 (E)	7	4:3	
a dou	HFC-1243zf	3,3,3- Trifluoropropene	CF3CH=CH2	<1	3:3	F, toxic
HFO (HFC- 1336mzz(Z)	cis-1,1,1,4,4,4- Hexafluorobut-2-ene (CAS:692-49-9)	CF3- CH=CH-CF3 (Z)	9	6:4	no hazards, pb=33°C;
	HFC- 1336mzz(E)	trans-1,1,1,4,4,4- Hexafluorobut-2-ene (CAS:66711-86-2)	CF3- CH=CH-CF3 (E)	18	6:4	no hazards, pb=8°C;
	HFC- 1345zfc	3,3,4,4,4- Pentafluorobut-1-ene	C2F5- CH=CH2	CH2=CHF <1 1:2 ExtF CF3CF=CHF <1 5:3 Irritant CH2=CF- CF3		
HCFC	HCFC- 1224yd(Z)	cis-1-Chloro-2,3,3,3- tetrafluoroprop-1-ene	CHCI=CF- CF3 (Z)	1	4:3+ CI	Ashai Glass
	HCFC- 1233xf	2-Chloro-3,3,3- trifluoroprop-1-ene	CH2=CCI-CF	1	1:3+ CI	F, irritant
	HCFC- 1233zd (E)	trans-1-Chloro-3,3,3- trifluoroprop-1-ene	CHCI=CH- CF3 (E)	4.5	3:3 +Cl	•
	HCFE- 235da2	Isoflurane	CHF2-O- CHCI-CF3	350	5:3+ CI +O	toxic

Increasing chain length

searches for CF4 replacement

HFE: mostly have a high boiling point

The two ethers from the JINST publication have GWP slightly above the cut (500) but still $\sim \! 10$ times better than CF4

In total only 4 gases of potential interest

HFE-143m		CF3-O-CH3	750	3:2+O	JINST13 P03012; bp= -24°C
HFE-236fa	CAS: 20193-67-3	CF3-CH2-O- CF3	487	6:3+O	bp=62°C
HFE-245fa1	CAS: 84011-15-4	CHF2-CH2- O-CF3	286	5:3+O	bp=26°C
HFE-245mc		CF3-CF2-O-CH3	622	5:3+O	JINST13 P03012 ; bp=5°C
HFE- 254cb2	CAS: 425-88-7	CH3-O-CF2- CHF2	359	4:3+O	HiF; irritant
HFE-263fb2	CAS: 460-43-5	CF3-CH2-O- CH3	11	3:3+O	no hazard info; bp=31°C;
HFE- 338mmz1	CAS: 26103-08-2	(CF3)2CH- O-CHF2	380	8:4+O	bp=40°C;
HFE- 347mcf2	CAS: 171182-95-9	CHF2-CH2- O-CF2-CF3	374	7:4+O	bp=50°C;
HFE- 347mmy1	CAS: 22052-84-2	(CF3)2CF-O- CH3	343	7:4+0	Irrititant; bp=29°C;
HFE- 347mmz1	(Sevoflurane)	CH2F-O- CH(CF3)2	216	7:4+O	bp=56°C;
HFE- 356mec3	CAS: 382-34-3	CH3-O-CF2- CHF-CF3	101	6:4+O	F, Irritant; bp=53°C;
HFE- 356mm1	CAS: 13171-18-1	(CF3)2CH- O-CH3	27	6:4+O	F?. Irritant?; bp=50°C;
HFE- 356pcc3	CAS: 160620-20-2	CH3-O-CF2- CF2-CHF2	110	6:4+O	bp=68°C;
HFE- 356pcf2	CAS: 50807-77-7	CHF2-CH2- O-CF2- CHF2	265	6:4+O	bp=74°C;
HFE- 365mcf3	CAS: 378-16-5	CF3-CF2- CH2-O-CH3	11	5:4+0	F; bp=46°C;

22/04/21

CF3I

