

LNF Test results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment

D. Piccolo for CMS LNF group

dpiccolo@lnf.infn.it

The search for an ecogas replacement at LNF

Review of possible Gas present on the market

L. Benussi, D. Piccolo et al.

Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

JINST 13 P03012 (2018)

Laboratory tests started in 2014 these slides

A study of HFO-1234ze (1,3,3,3-Tetrafluoropropene) as an eco-friendly replacement in RPC detectors, arXiv:1505.01648

Eco-friendly gas mixtures for Resistive Plate Chambers based on Tetrafluoropropene and Helium *JINST* 11 P08019 (2016)

Preliminary results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment *JINST* 11 C09018 (2016)

Choice of few candidate mixtures

Tests under irradiation (GIF++)

RPC ECOGAS@GIF++
Collaboration

Experimental Set-up in Frascati

S. Bianco, L. Benussi, D. Piccolo, L. Passamonti, D. Pierluigi, A. Russo

- single gap RPCs, 2 mm wide gas gap
- 50 x 50 cm²
- Double Pad readout
 - partial cancellation on single mode noise
 - Expected about x2 induced signal charge
- Scintillator layers on top and bottom for trigger

Data taken with oscilloscope

- Gas chromatograph: for gas mixture analysis
- 4 channels Oscilloscope lecroy104xi (5 Gsamples, 1 GHz): for signal readout
 - Full digitization of signal

Frascati test station: Notes on the analysis

- Threshold used for analysis of RPC:
 - Efficiency: $Q_{induced} > 300$ fC (to be divided for ~2 because of double pad readout) and $|V_{max}| > 0.4$ mV (similar to CMS Front electronic threshold)
 - Streamer: $Q_{induced}$ > 40 pC (to be divided for ~2 because of double pad readout)
- HV corrected at P_0 =990 mbar, T_0 = 20 degrees
- Time resolution is extracted from the difference between time over threshold (0.8 mV) of trigger RPC and test RPC
- CMS standard gas mixture:

R134a (95.2 %) i- C_4H_{10} (4.5 %) SF_6 (0.3%)

LNF

Test

station

Replacing R134a with HFOze

HV normalized to P=990 mbar and T= 20 °c

Replacing R134a with HFOze

Pad Induced charge to be divided by ~2 (double pad readout)

LNF Test station

Summary:

HFO shows interesting quenching properties BUT cannot be used alone to replace R134a (large shifts of working voltage)

CO2/HFO based gas mxitures

HV normalized to P=990 mbar and T= 20 °c

He/HFO based gas mixtures

HV normalized to P=990 mbar and T= 20 oc

He/HFO based gas mixtures

Total Induced charge to be divided by ~2 (double pad readout)

LNF Test station

Summary: Use of Helium to reduce working voltage shows reasonable results, but not clear if Helium could be used in CMS

CF₃I vs R134a

10

HV normalized to P=990 mbar and T= 20 oc

CF₃I vs R134a

Total Induced charge to be divided by ~2 (double pad readout)

LNF Test station

Summary:

Large quenching power BUT for the same efficiency average charge and streamer probability seem to be slightly higher

CF₃I-CO₂ based gas mixtures

LNF Test station

HV normalized to P=990 mbar and T= 20 °c

CF₃I vs R134a

Total Induced charge to be divided by ~2 (double pad readout)

LNF Test station

Summary: preliminary results. More work needed to explore if CO_2/CF_3I gas mixtures could be used. BUT the CF_3I is very toxic

Conclusions

- Several ecological (or semi-ecological) gas mixtures have been tested
- HFO-1234ze has interesting quenching properties but cannot be used alone to replace the R134a (high working voltage shift)
- CO2/HFO-1234ze gas mixtures seem to give interesting results
- Use of Helium help in reducing working voltage and is a interesting line to be followed
 - Not clear if possible to use in CMS
- **CF**₃I is a very interesting candidate from theoretical point of view
 - Very expensive
 - Very quenching
 - Toxic
 - Still the streamer probability and average charge seems to be slightly higher with respect to standard gas mixture for the same Efficiency
 - CO₂/CF₃I based gas mixture studies are only preliminary

Backup

Control region distributions

Efficient signal selection:

- Integrated charge > 0.3 pC
- |Vmax|>0.4 mV

Cuts verified un the control region Noise contamination in efficiency definition lower than 0.5 %

CO2/SF₆ based gas mxitures

HV_{eff} [V] For high values of the applied voltage one of the Gaps trips and the chamber works in single mode.

HV normalized to P=990 mbar and T= 20 °C

Possible eco-gas repacements

(l₂

It cames in two allotropic forms

HFO-1234ze

Molecule	CCbF2	CF ₄	R134a
Ionization energy (eV)	10.24	12.81	12.40
Molecule	R152a	HFO1234ze	HFO1234yf
Ionization energy (eV)	10.78	9.34	9.37

Molecule similar to R134a ($C_2H_2F_4$) BUT HFO-1234ze GWP=6, HFO-1234yf GWP=4 R134a GWP = 1430

HFO-1234yf HMIS code =2 (moderate flammability)

In this talk we concentrate on HFO-1234ze (HFO in the labels will mean HFO-1234ze)

GWP and ODP close to 0

High quenching power

Very expansive! We were able to buy just a small bottle of 0.5 kg for very few preliminary tests

The "ecological" gas issue

The European Community has prohibited the production and use of gas mixtures with Global Warming Power > 150 (GWP(CO_2) = 1)

- √This is valid mainly for industrial (refrigerator plants) applications
- ✓ Scientific laboratories would be excluded
- ✓ CERN could require to stick to these rules anyhow
- > $C_2H_2F_4$ is the main component of the present RPC gas mixture:

$$\checkmark$$
GWP(C₂H₂F₄) = 1430, GWP(SF₆) = 23900, GWP(iC₂H₁₀) = 3.3

- \sim C₂H₂F₄ and SF₆ Crucial to ensure a stable working point in avalanche
- ightharpoonupTo_test molecules similar to $C_2H_2F_4$ but with lower GWP

 $C_3H_2F_4$ - tetrafluoropropene (GWP=4-6)

✓ Should replace C₂H₂F₄ as automotive air-conditioning refrigerant

✓other possibility could be CF₃I - Trifluoroiodomethane with GWP ~ 0 & ODP ~ 0

LNF

Test

station

He/HFO based gas mixtures

efficiency Streamer probability

HV normalized to P=990 mbar and T= 20 oc

He/HFO based gas mixtures

Total Induced charge to be divided by ~2 (double pad readout)

LNF Test station

HV_{eff} (Volts)

CO2/HFO based gas mxitures

time resolution (ns)

Total Induced charge to be divided by ~2 (double pad readout)

LNF Test station

Charge and time resolution for HFO at 45% not available (to be recovered)