Monitoring Detectors for Transport Parameter Studies

Philip Hamacher-Baumann

22.04.2021

Monitors for Full-Scale Drift Chambers

doi:10.1016/j.nima.2017.12.032

Ensure short- and long-term continuity of host detectors

- Monitor gas quality of host detector gas system
- Continuous calibration:
 - Inverted reconstruction-event chain, i.e. known track positions
 - Can be used to reconstruct transport parameters
- (Relatively) small size

Miniature versions of full-scale detectors

Operation Principle: Drift Velocity (and Gain)

Drift Velocity

- Time delta between tracks of defined distance
 - β-electrons create ionization tracks
 - Lasers liberate electrons at photocathodes
- Effectively measures v_d in central region between ⁹⁰Sr sources

Gas gain:

Mono-energetic events from xray source (55Fe)

Ageing

- Built with same or comparable gas multiplication stages
- Can have exchangeable parts:
 - Invasive investigations possible
 - Exploring full operational range

Higher and controllable rate

Extrapolation of ageing

C, O and Si deposits on VDC anode wire

Same MicroMegas as in T2K TPCs

Drift Velocity Monitors

Low latency reaction to anomalies

- Small inner volumes can be flushed at much higher rates than host detectors
 - T2K TPCs completely exchange gas every ~5hrs
 - Every ~20min for GMCs
- Sample gas from various sources
 - Supply gas
 - Return gas
 - Different segments of a detector
- Run at different fields
- Exchangeable radioactive sources

Gas monitoring chambers can be used to study electron transport parameters at changing fields.

Drift velocity

The Gas Monitoring Chambers of the T2K Experiment

- Sources outside of gas volume
 - Can be replaced with different emitter (e.g. x-ray)
- ⁵⁵Fe sources to create point-like mono-energetic clouds at different drift distances

Enables measurement of transverse diffusion.

Transverse Diffusion in T2K Gas

- Point-like events generated above two pads
- Charge distribution more evenly distributed across pads for wider electron clouds:

$$\eta = \frac{Q_0}{Q_0 + Q_1}$$

Transverse Diffusion in T2K Gas

- Shape of d_t curve looks reasonable
- 10-20% deviation from simulation
- v_d precision ~1%

A Gas Monitoring Chamber for High Pressure

High Pressure Gas Monitoring Chamber - HPGMC

Gas Density Corrections

- Gas density affects almost every transport parameter
- Most drift gas mixtures behave ideal up to 10 bar
- Electrons "see" reduced field, by number density

Scale drift field

$$E
ightarrow rac{E}{N} \propto E rac{T}{p}$$

$\operatorname{magnitude}$	scaling $(n = N/N_0)$
electron, ion drift velocity v_d	$v_d(E/n)$
electron, ion diffusion coefficients $D_{L,T}^*$	$\frac{1}{\sqrt{n}}D_{L,T}^*(E/n)$
attachment coefficient η	$n \cdot \eta(E/n)^{*a}$
Light transparency \mathcal{T}	$\exp\left(-n\Pi_a L^*\right)$
scintillation probability P_{scin}	$rac{1}{1+n au k}$
particle range R	R/n
Fano factor F_e , W_I , W_{ex}	$\sim { m constant}$
charge multiplication coefficient α	$n \cdot \alpha(E/n)^{*b}$
secondary scintillation coefficient Y	$n \cdot Y(E/n)^{*b}$

[D. Gonzalez-Diaz, F. Monrabal, S. Murphy Nucl. Instrum. Meth. A 878 (2018) 200-255]

P10 Measurement in HPGMC

P10 Gas: Ar + 10% CH₄

- 10 bar pressure range covered
- Data corrected for pressure is self-consistent
- Matches with available external data
- Simulation provided by MagBoltz v11.9

Pressure scaling in T/p verified over a range of 10 bar

P10 ratios

Simulation and measurements of v_d

- Underestimated at low fields
- Overestimated at higher fields
- Crossing point slightly behind v_d^{max}

Gas purity check at 1.5bar

- ~2% v_d^{max} reduction in 7 days w/o gas flow
- Recovery in ~ 24h at nominal flow
- Mixing uncertainties and sim. stat. errors added as bands to zero-line

Simulation and data agree at the few-% level.

- Often already collect electron transport parameters
- Small scale and replaceable parts make them an ideal playground for new ideas

Gas Monitoring Chambers can be used for transport parameter measurements

- Designed for fast precision measurements of drift velocity
- Transversal diffusion with slight modifications of measurement setup
- (not shown) Longitudinal diffusion from waveform of anode signal

We *are* taking requests! © tpc-3b@physik.rwth-aachen.de

Steinmann, https://publications.rwth-aachen.de/record/465404

Sources

The drift velocity monitoring system of the CMS barrel muon chambers

doi:10.1016/j.nima.2017.12.032

Time Projection Chambers for the T2K Near Detectors

doi:10.1016/j.nima.2011.02.036

A Gas Monitoring Chamber for High Pressure Applications

e-Print: <u>2005.03636</u> [physics.ins-det]

Streamlined Calibrations of the ATLAS Precision Muon Chambers for Initial LHC Running

doi:10.1016/j.nima.2011.12.086

Measurements and simulation of drift gas properties for the time projection chambers of the T2K experiment and for future neutrino experiments

doi:10.18154/RWTH-2019-08019

Backup

Longitudinal Diffusion T2K Gas

