F-gases usage in the ALICE detector Luca Quaglia¹ on behalf of the ALICE collaboration ¹Università degli studi di Torino and INFN Torino #### **Overview** - The ALICE detector - F-gases in the ALICE sub-detectors - Muon Identification (MID) system - Time Of Flight (TOF) detector - High Momentum Particle Identification Detector (HMPID) - Conclusions and remarks #### The ALICE detector - A Large Ion Collider Experiment (ALICE) - Multi-purposed particle detector (p-p, p-Pb and A-A collisions) at the CERN LHC - Focused on the study of the Quark Gluon Plasma (QGP) in heavy-ion collisions - → For PID and tracking of hadrons, e and γs Forward muon spectrometer \rightarrow For muon tracking and identification ## F-gases in the ALICE detector (1) - Total of 18 subdetectors in ALICE - Various particle detection and identification technologies employed - Three of the 18 detectors employ F-gases: Time Of Flight (TOF), High Momentum Particle Identification detector (HMPID) and Muon Identification system (MID), highlighted in red in the following figures HMPID ## F-gases in the ALICE detector (2) | Detector name | Technology
employed | Mixture | Aim of the detector | |---------------|--|--|---| | TOF | Multigap Resistive
Plate Chambers
(MRPCs) | 93 % C ₂ H ₂ F ₄
7 % SF ₆ | Charged-particle PID in the intermediate momentum range | | HMPID | Ring Imaging
Cherenkov detector
(RICH) | Liquid C ₆ F ₁₄ as
Cherenkov radiator | PID of high-
momentum particles,
i.e. π, K and p from 1
to 5 GeV/c | | MID | Single gap Resistive
Plate Chambers
(RPCs) | $89.7 \% C_2H_2F_4$ $10\% i-C_4H_{10}$ $0.3 \% SF_6$ | Identification of
muons from the
decays of heavy
flavour and quarkonia | ## Muon Identification system (MID) - 72 single gap RPCs covering a total area of ~ 140 m² - 2 mm thick gas gap and 2 mm thick low resistivity (10^9 - $10^{10} \Omega \cdot \text{cm}$) bakelite electrodes - Arranged in 2 stations of 2 planes each located at ~ 16 and 17 m from the interaction point in the forward rapidity region downstream of a 7 λ_{int} iron wall (muon filter) - Operated in highly-saturated avalanche mode (maxi-avalanche) - → Effective high voltage applied ~ 10-10.5 kV, average charge per hit ~ 100 pC - Gas mixture: 89.7 % C₂H₂F₄, 10 % i-C₄H₁₀, 0.3 % SF₆ - Up to run 2: provide a trigger signal for the muon spectrometer - From run 3 onwards: - → ALICE will run with continuous readout - → Muon identification offline Schematic view of the MID RPCs – ALICE collaboration, ALICE Technical Design Report, 2008 Exploded view of a single gap RPC – M. Abbrescia et al., Resistive gaseous detectors #### Choice of the gas mixture for MID - C₂H₂F₄ (R134a) and SF₆ are the F-gases in the MID gas mixture - R134a: - → Low primary ionization energy, provides primary electrons - → High electron affinity, helps reducing the size of the avalanche - SF₆: - → Highly electronegative, reduces signal charge and streamer contamination - → Working point shifted to higher voltages - Initially two gas mixtures were investigated: streamer mixture for Pb-Pb data taking and maxi-avalanche for p-p - → Streamer: 50.5 % Ar, 41.3 % $C_2H_2F_4$, 7.2 % i- C_4H_{10} and 1 % SF_6 - \rightarrow Maxi-avalanche: 89.7 % $C_2H_2F_4$, 10 % i- C_4H_{10} and 0.3 % SF_6 - Eventually converged to the single maxi-avalanche mixture for both Pb-Pb and p-p #### MID gas mixture R&D - Effects of varying the percentage of SF_6 in the RPC gas mixture ($C_2H_2F_4/C_4H_{10}$ 97/3 relative fraction): - 1) Efficiency plateau moves to higher High Voltage (HV) values - 2) Increased "useful plateau", i.e. HV interval where efficiency $\,\sim 90\text{-}95\,\%$ and streamer probability $\sim 10\,\%$ - Aging test carried out at the CERN Gamma Irradiation Facility to validate long-term detector operation with maxi-avalanche gas mixture - 1) Stability of efficiency, with and without Irradiation, dark current and counting rate - 2) Efficiency curve before and after Irradiation R. Arnaldi et al., Beam and ageing tests with a highly-saturated avalanche gas mixture for the ALICE p-p data taking, 2006 #### Impurities production - Interaction between gas and radiation has two effects: - → Signal production - \rightarrow Gas radiolysis = breakage of gas molecules into impurities (e.g. C_2HF_3 or $C_2H_2F_3$) - Main component of gas mixture is C₂H₂F₄ (rich in F) - → It can interact with H₂O (humidified gas mixture) and form Hydrofluoric acid (HF) - HF is highly corrosive - → It might deposit on the inner surfaces of the detector and chemically attack them - → This may explain the observed dark current increase - To validate this hypotesis - \rightarrow 2/72 RPCs flushed with pure Ar - → When fully ionizied a plasma is created in the gap - → Cleaning action of the plasma might detach some of the deposited HF - Measurement of the produced F⁻ ions resulting from this procedure was carried out - → Non-zero concentration was detected, increasing with the integrated charge - → Hint of possible fuorinated impurities detachment - This procedure had no effect in reducing the absorbed dark current F⁻ ions cumulative concentration as a function of the integrated charge during the Ar plasma test – L. Quaglia et al., *Performance* and aging studies for the ALICE muon RPCS, 2020 ## The MID gas consumption - Average volume of a single RPC: 270 x 70 x 0.2 cm³ = 3780 cm³ - Total volume to be flushed with gas mixture = 72 x 3780 cm³ ≈ **0.3 m**³ - The gas mixture is toxic for the environment (GWP¹) of around 1230 - → In Run 2 the detectors were operated in a closed loop system in order to reuse part of the gas mixture - → Recirculation Fraction (RF) = fraction of the gas mixture recirculated - The gas mixture is continuously flushed in the system (total flow of ~ 144 l/h) - \rightarrow A fraction of fresh gas is inserted in the loop ((1-RF) * total flow \approx 36 l/h if RF = 75 %) in order to compensate for leaks in the system and try to keep dark currents under control - → The rest is **circulated through a purifier** to remove impurities formed under irradiation - -Trend of the absorbed dark current for different recirculation fractions (the % of the gas mixture that is recirculated) - -Dark currents increase when RF from 33 % to 60 % then stable - -In 2017 a change in RF did not show improvement in the dark current B. Mandelli, RPC workshop 2018, Puerto Vallarta ### Time Of Flight (TOF) detector - Covers an area of $\sim 150~\text{m}^2$ and provides a time resolution of $\sim 100~\text{ps}$ or less: Multigap Resistive Plate Chambers (MRPCs) - Located at 3.7 m from the nominal Interaction Point (IP), gives full coverage in ϕ and [45,135] ° in θ - TOF MRPCs: strips of 120 x 7.4 cm² with 96 readout pads each - Each strip consists of two stacks of five gaps - \rightarrow Total of 10 gaps, 250 µm each - → Resistive plates made out of *soda-lime* glass - → TOF = 1638 MRPC strips and ~ 160 k readout channels - Operated in avalanche mode with a streamer-free gas mixture of 93 % C₂H₂F₄ + 7 % SF₆ - TOF provides 3σ separation for π/K in the 0.5-2.5 GeV/c and up to 4 GeV/c for protons # Choice of the gas mixture for TOF (1) - First studies on ternary mixtures: C₂H₂F₄, C₄H₁₀ and SF₆ - Increasing the SF₆ percentage the efficiency plateau shifts to higher voltages (as for single gap RPCs) - Two processes affect time resolution: - 1) Higher SF, concentration requires higher electric fields - → higher drift velocity and improved time resolution - 2) SF₆ reduces the ionization clusters and worsens the time resolution - At 0 % SF₆ - → Degradation of time resolution due to streamers - Studies on binary mixtures → No C₄H₁₀ = not flammable gas mixture = safer - Similar performances in efficiency and time resolution - Plateau where time resolution is best is larger # Choice of the gas mixture for TOF (2) - Aging studies performed on the ternary gas mixture @ GIF - Total integrated charge = 14 mC/cm² - → Average total charge produced in an event ~ 2 pC - \rightarrow 14 mC/cm² = 7·10⁹ particles/cm² - → Average charged particle rate on TOF = 50 Hz/cm² - \rightarrow Aging test = 1620 days of operation - No HF production was observed under irradiaiton - → Due to the fact that MRPCs are operated in *streamer-free* mode - Comparison of efficiency and time resolution before and after irradiation - → No degradation observed in either quantity - → Efficiency above 99.5 % and time resolution below 50 ps #### The TOF gas system - MRPCs are enclosed in gas-tight boxes - → The total gas volume is not only the volume of the MRPCs but the one of the boxes ≈ 20 m³ - Since the beginning of operations TOF MRPCs are operated in closed loop - \rightarrow 30 % of the total gas volume is refreshed every Δt (initially 8 hours and then increased) - → Currently there is an entire gas volume change every ~ 30 days - \rightarrow 26 l/h of fresh gas - Purifier used to remove H₂O, O₂ and other impurities from the gas mixture - \rightarrow Possible to increase the Δt but keeping in mind that the main goal is to maintain efficiency and time resolutions #### **High Momentum Particle Identification Detector** (HMPID) - 7 identical proximity focusing Ring Imaging Cherenkov detectors (RICH) covering a total area of ~ 12 m² - Located on an independent cradle mounted in the two o'clock position on the ALICE space frame - Chambers tilted in a cupola-like structure to focus on the nominal interaction point at ~ 4.7 m distance from the detectors - Cherenkov photons are detected by a photon counter: → Multi Wire Proportional Chamber (MWPC) operated with CH₄ at atmospheric pressure - The MWPC cathode plane is segmented into pads and coated with a 300 nm photosensitive layer of Csl # C₆F₁₄ as radiator medium - C₂F₁₄ (Perfluorohexane) is a liquid at STP conditions and it is used as radiator medium in the ALICE HMPID - Refraction index n = 1.2989 at 175 nm - \rightarrow Threshold momentum for Cherenkov radiation p_{+b} = 1.21 m GeV/c (m = particle mass) - Great capacity for dissolving gases and water at the ppm level → Bad because water and oxygen absorb ultraviolet radiation - Good transparency to ultraviolet radiation in the region that matches the quantum efficiency spectrum of the Csl photocatode Y. Andres et al., Cleaning and recirculation of perfluorohexane ($C_{*}F_{**}$) in the STAR-RICH detector, 2002 C. Pastore et al., The Cherenkov radiator system of the high momentum particle identification detector of the ALICE experiment at CERN-LHC, 2011 # HMPID C₆F₁₄ circulation system - HMPID operates in closed loop mode in order to recover the C_6F_{14} since C_6F_{14} has a GWP of 7910 - Complex system based on gravity in order to: - → remove contaminants and isolate the radiator liquid from water and oxygen - → avoid overpressures in the vessels - → condensate liquid vapour for reuse - 7 HMPID modules with 3 radiator each = 21 radiator vessels - Liquid pumped at 6.3 bar from the tank at 235 l/h - In purifying station: 13x Molecular Sieve filters remove contaminants - → Best liquid transparency, real time monitoring - High pressure of the liquid has to be reduced - → Max over-pressure of vessels = 140 mbar - Done thanks to a cascade distribution system → It ensures a laminar flow of 4 l/h in each vessel - Pure Ar isolates the system from outside air - The system is stagnant during LHC technical stops C. Pastore et al., The Cherenkov radiator system of the high momentum particle identification detector of the ALICE experiment at CERN-LHC, 2011 #### Conclusions and remarks (1) **MID F-gases Consumption (tCO2e)** - Gas consumption (ton) in CO₂ equivalent for MID and TOF - From RUN 1 to RUN 2 → Reduction in consuption due to close loop gas system for MID From RUN 1 to RUN 2 → Reduction in consuption due an increase in the time for a full change of the gas volume for TOF #### **Conclusions and remarks (2)** - F-gases are an essential part in gas mixture for some of the gaseous sub-detectors in ALICE - Extensive R&D has been carried out in the past to get to the currently employed mixtures → MID gas mixture provides a subcentimeter spatial resolution and a timing resolution in the order of 1 ns - \rightarrow TOF gas mixture provides a timing resolution in the order of 56 ps - They both have a very high GWP - → MID gas mixture ≈ 1237 - → TOF gas mixture ≈ 2854 - New Europen Union regulations are pushing for a progressive phase out of F-gases production and usage - → Prices are already increasing - → Efforts to find new, more eco-friendly, gas mixtures for RPC detectors (see A. Bianchi, G. Proto and EcoGas@GIF++ talks in the last session) - A first reduction in F-gases consumption is being carried out by recirculating the gas mixture - → MID: moved from open to closed loop between RUN 1 and RUN 2 - → TOF: increasing the time taken to change a full gas volume # Thank you for your attention!