LHCb-RICH detectors and their gas radiators

CERN: Mini-Workshop on gas transport parameters for present and future generation of experiments

On behalf of LHCb-RICH group

Outline

- > LHCb experiment
 - Synopsis of particle identification in LHCb
- Design features of the current RICH system
 - Unique in covering the momentum range 2-100 GeV/c for hadrons
- Properties of the current gas radiators
 - Gas system successfully operated for many years
- Performance of the RICH system
- Issues regarding radiators for future LHCb upgrades and ideas for alternative gases
 - Discussed in the second talk from LHCb later today
- Summary

The LHCb Experiment

 $2 < \eta < 5$, Forward spectrometer.

Overall acceptance ~ 10 → 300 mrad

Momentum range: 2-100 GeV/c

From 2015:

 \rightarrow pp : \sqrt{s} = 13 TeV

➤ RICH1:

 C_4F_{10} < ~ 60 GeV/c, Photodetectors: Top + Bottom

➤ RICH2:

CF₄: < ~ 100 GeV/c Photodetectors: Left+ Right

Before 2015:

ightharpoonup pp : \sqrt{s} = 8 TeV, Aerogel < 10 GeV/c

Polar angles of b and \bar{b} hadrons from p-p collisions in LHC

Features of the RICH system

- ➤ Momentum coverage: 2-100 GeV/c
 - Upper limit defined from typical physics channels:

Examples: Momenta of π^+ in $B^0 o D_s^- \pi^+$ and π^+ in $B^0 o \pi^+ \pi^-$

Lower limit also defined from typical physics channels:

Large fraction tracks in low momenta.

kaons used for flavour tagging in $b \rightarrow c \rightarrow s$ transitions, have low momenta.

- Aerogel was removed in LS1.
- Hence using only 'veto mode' for momenta below 10 GeV/c

➤ The data from RICH is an an essential part of the physics programme of LHCb

Particle momentum

LHCb-RICH Design features

RICH1:
$$C_4F_{10}$$
 L ~ 107 cm p: < 60 GeV/c n ~ 1.0014 (nominal at 400 nm)

- Upstream of LHCb Magnet
- Acceptance: 25→250 mrad (vertical)
 300 mrad (horizontal)
- Gas vessel: 4 m³

RICH2:
$$CF_4$$
 L ~ 196 cm p: < 100 GeV/c n ~ 1.0005 (nominal at 400 nm)

- > Downstream of LHCb Magnet
- Acceptance: 15→100 mrad (vertical)
 120 mrad (horizontal)
- Gas vessel: 100 m³

$$\text{(n-1)} \, \propto \, \frac{\mathbf{P}}{\mathbf{T}}$$

- ❖ However the two RICH detectors are kept at ambient temperature(T) and pressure (P).
- ❖ This avoids potential damage to the mirror systems and the thin quartz windows. It also helps to reduce variation of P and T within the gas vessels.
- ❖ P and T are constantly monitored and n recalculated in online, using Sellmeier formulae.

Charged tracks : polar angle vs momentum

Number of photons produced
$$\propto$$
 L (1-

❖ Length (L) of RICH2 is larger than that of RICH1.

LHCb-RICH1 SCHEMATIC

Magnetic Shield Gas Enclosure Beam Pipe Spherical Mirror Flat Mirror Photodetectors Readout Electronics

 Spherical Mirror tilted to keep photodetectors outside acceptance (tilt ~ 0.3 rad)

RICH1 in pictures

LHCb-RICH2 SCHEMATIC

288 HPDs and magnetic shielding (1152 MaPMTs in RUN3)

RICH2 in pictures

Properties of the current gas radiators

- > The current choice of the two gas radiators is based on results from extensive searches of different gases.
- > They were used in test beam studies, before using them in the LHCb-RICH system

	RICH1	RICH2	
Gas	C_4F_{10}	CF ₄	
Volume	\sim 4 m 3	$\sim\!\!100~{ m m}^3$	
Flow	\sim 0.5 m ³ /h	\sim 5 m $^3/h$	
O2 impurity	0.4 % / < 0.02%	0.1 % / < 0.02%	
N2 impurity	2 % / < 1%	0.5 % / < 1%	
H2O impurity	< 0.02%	< 0.02%	
Density	10 kg/m^3	3.5 kg/m^3	
Boiling point	-1.9°C	-128°C	
Price	\sim 1000 CHF/m 3	\sim 300 CHF/m ³	

- Important to keep impurities down
- Impurities can change refractive index.

 They may also produce photons from scintillation and ionization.

Gas system in pictures

Gas System in Surface Building - RICH1

LHCb contact for the gas system: Christoph.Frei@cern.ch

Properties of the current gas radiators

	RICH1 C ₄ F ₁₀	RICH2 CF ₄	
L	107	196	cm
$\theta_{\text{c}}^{\text{ max}}$	53	32	mrad
π Th	2.6	4.4	GeV/c
K_{Th}	9.3	15.6	GeV/c

Nominal single photon resolution (in mrad)	RICH1-old HPD, C ₄ F ₁₀	RICH1-RUN3 MaPMT, C ₄ F ₁₀	RICH2-old HPD, CF ₄	RICH2-RUN3 MaPMT, CF ₄
Chromatic	0.84	0.52	0.48	0.34
Overall (RICH)	1.60	0.80	0.65	0.50
Yield	32	63	24	34

- Two of the requirements for new radiators:
 - The chromatic error should not worsen than the current level
 - The yield should be at least as good as the current level
- This would imply that distributions of n for the new radiators need to be similar to or better than those shown here.

Full table with all other components of the resolutions in backup page

- Yield: Number of photon hits detected per charged track.
- RICH1 radiator length and optics upgraded for RUN3.
- RICH2: From R-Type MaPMTs
- Chromatic error: From the variation of n with wavelength.

Properties of the gas radiators

- ➤ CF₄ scintillation:
 - A few percent of CO_2 is added to CF_4 so that the scintillation photons are mostly quenched. Ref: Nucl.Inst.Meth. A 791 (2015) 27-31 ("Quenching the scintillation in CF4 Cherenkov gas radiator")
- ➤ C₄F₁₀: Particle separation from isolated Cherenkov rings in real data

Eur.Phys. J.C (2013) 73:2431

- Other gases
- : They were expected to perform worse than the two gases used, especially in the low wavelength region. When there was potential shortfall in the supply of C_4F_{10} , investigations were done regarding the use of C_3F_8 as a substitute. However this option was later abandoned.

Data from the RICH detectors

Examples of RICH performance from earlier data

Detector performance from RUN1:

Eur.Phys. J.C (2013) 73:2431, M.Adinolfi et.al. "Performance of the LHCb RICH detector at the LHC"

Summary

- > Data from the RICH system is used in most of the physics analysis results from LHCb
- > The two gas radiators cover the momentum range required for LHCb.
- > The gas system worked successfully for the past two RUNs and is expected to be used for RUN3.
- ➤ New gases would need to perform at least as good as the current system, in terms of the chromatic error contributions and photon yields.

BACKUP PAGES

LHCb-RICH: Nominal resolutions

Nominal single photon resolution (in mrad)	RICH1-old HPD, C ₄ F ₁₀	RICH1-RUN3 MaPMT, C ₄ F ₁₀	RICH2-old HPD, CF ₄	RICH2-RUN3 MaPMT, CF ₄
Chromatic	0.84	0.52	0.48	0.34
Pixel	0.60, PSF=0.86	0.50	0.19 PSF=0.29	0.22
Emission point	0.76	0.36	0.27	0.32
Overall (N) + Track	1.60 0.49	0.80 0.36	0.65 0.42	0.50 0.36
Yield (N)	32	63	24	34