Spectrometer Solenoid Update

MICE Collaboration Meeting #28 Sofia, Bulgaria

Steve Virostek

Lawrence Berkeley National Lab

Topics

- Magnet overview and history
- Magnet technical assessment
- Design modification plan
- Manpower
- Schedule

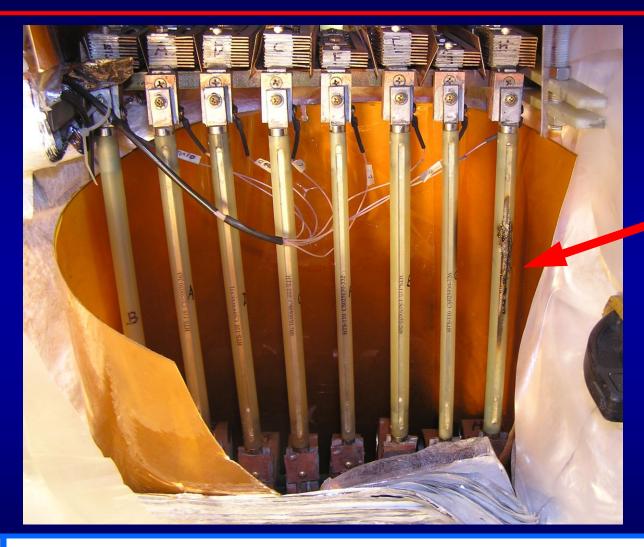
MICE Cooling Channel Layout

Spectrometer Solenoid #1

Spectrometer Solenoid Overview

Key magnet requirements:

- Each of the five coils must be trained to 275 amps
- The cryocoolers must maintain the LHe in the cold mass (no boil-off)


Magnet history:

- Both magnets were previously fully assembled and tested
- Magnet #1 trained to 196 amps before disassembly to modify the recondensing circuit, which was prone to blockage
- Magnet #2 was assembled with a modified condensing circuit and several other design enhancements
- The second magnet trained to 238 amps when an HTS lead burned out due to inadequate cooling of the upper lead ends

HTS Lead Burnout

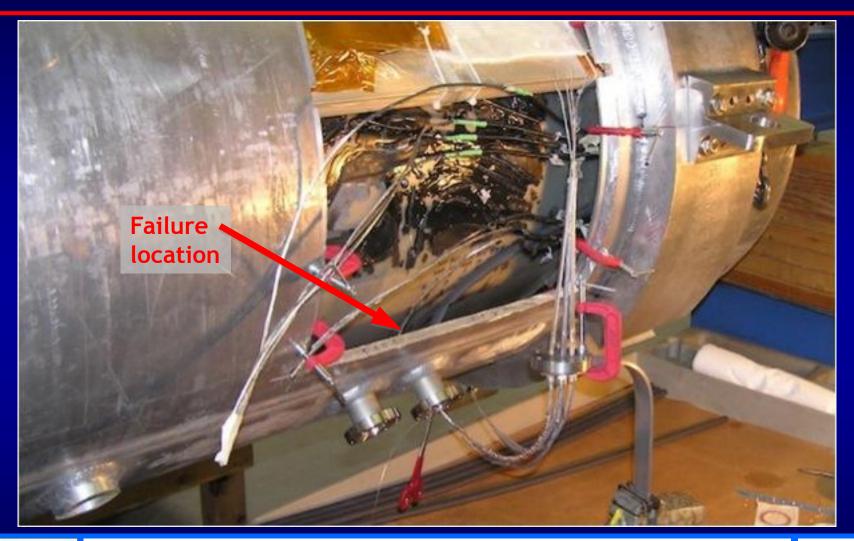
Steve Virostek -- Lawrence Berkeley National Laboratory -- October 6, 2010

Spectrometer Solenoid Overview

Magnet history (cont'd):

- An 11/09 MICE project committee developed recommendations before Magnet #2 was prepared for a 2nd round of testing
- Per the committee's recommendation, a single-stage cooler was added to increase the shield and HTS lead cooling
- With the HTS lead issue solved, Magnet #2 trained to 258 amps
 when a coil lead was found to contain an open circuit
- Also, the three 2-stage coolers + the 1-stage cooler could not maintain a closed LHe system (per boil-off measurements)
- Magnet #2 has been disassembled and the cold mass opened: the failed lead was just inside the cold mass feedthrough

Added Single Stage Cryocooler



Steve Virostek -- Lawrence Berkeley National Laboratory -- October 6, 2010

Preliminary Repair of Leads

Steve Virostek -- Lawrence Berkeley National Laboratory -- October 6, 2010

FNAL Technical Assessment Committee

- An FNAL technical committee has assisted with the assessment of the magnet design and assembly
- Committee members: Jim Kerby (chair), Bob Sanders and Vladimir Kashikhin (all from FNAL)
- The committee's charge included the following:
 - assess the thermal design of the magnet
 - review the thermal performance of the magnet
 - recommend design changes to reduce heat leaks
 - determine the number and type of cryocoolers required

Preliminary Assessment & Plan

- LBNL is developing a plan to respond to the committee's recommendations before incorporating design changes
- The initial steps in the process are shown below:
 - A complete set of the latest as-built drawings (w/future changes where possible) is being compiled
 - All heat loads are being reassessed to ensure that the LHe in the cold mass can be maintained with the final number of cryocoolers
 - All EM calculations are being redone for testing and operation
 - The instrumentation plan is being modified to allow confirmation of the thermal and EM calculations during testing
 - The mechanical support of the magnet, leads, piping and other internal components are being reassessed

Design Modification Plan

- In parallel to the analysis effort, a modification and assembly plan is being developed and will include:
 - reduction of heat leaks to the cold mass
 - the addition of more cryo cooling power
 - modification of the cold leads near the feedthroughs to prevent burn-out
- The preliminary plan (pending the final results of analyses) is shown on the following slides
- The final plan will be reviewed later this month by a team assembled by MICE management

Design Modification Plan

4.2K heat load reduction:

- Improved vacuum pumping and instrumentation will be implemented to ensure adequate cold mass insulation
- All 4K areas will be covered with actively cooled shield where possible - partially covered areas will be analyzed
- Baffles will be added to the vent lines to prevent direct radiation shine to 4.2K
- Possible thermal acoustic oscillations in vent lines will be addressed by monitoring with fast pressure gauges
- Application of MLI on cold mass bore will be improved
- Sensor wires will be optimized & w/proper heat sinking

Design Modification Plan (cont'd)

- Radiation shield heat load reduction:
- Portions of the shield will be reinforced with copper and pure aluminum to improve thermal conductivity
- The thermal connection between the cooler first stage and the radiation shield will be improved
- Application of MLI on shield bore tube will be improved
- The heat loads from the following will be decreased as possible: shield pass through holes for the cold mass supports, intermediate cold mass support heat intercepts, and shielding of the warm end of the supports

Design Modification Plan (cont'd)

- Other key improvements:
- The total cooling power will be increased by using five 2stage pulsed tube coolers and one single-stage cooler
- The thermal/mechanical stabilities of the cold leads will be improved by adding extra copper/superconductor near the cold mass feedthroughs
- Other improvements/additions:
- LBNL/MICE personnel will be present to document and oversee all aspects of magnet reassembly
- Detailed MLI inspection will be carried out during ass'y
- A fast DAQ system will continuously monitor voltage taps

Manpower

- Magnet design consulting
 - Tapio Niinikoski (Retired from CERN Cryogenic/Magnet Engineer)
- Thermal calculations & EM Analysis
 - Soren Prestemon (LBNL Engineering Division Cryogenic Engineer)
- Mechanical analysis
 - Steve Virostek (LBNL Engineering Division Mechanical Engineer)
- Drawings
 - Steve Virostek, Sisi Shan (LBNL Mechanical Engineers), Wang NMR
- Instrumentation plan
 - Soren Prestemon, Mike Green (LBNL Cryogenic Engineers), Wang NMR
- Fabrication oversight
 - Nanyang Li (LBNL Engineering Division Production Engineer)

Schedule (preliminary)

Task Description	2010			2011					
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
1st Completed Spectrometer Solenoid									
Completion of magnet modification plan									
Cold mass modification									
Cold mass prep for assembly									
Thermal shield prep for assembly									
Cold mass/shield/cryostat assembly									
Tower area installation									
Magnet cool down and training									
2nd Completed Spectrometer Solenoid									
Component modification and assembly									
Magnet cool down and training									

Summary

- Magnet design assessment nearly complete
- Final modification plan being developed
- Committee review of plan to be conducted later this month

