G4MICE Status and Plans

Chris Rogers,
ASTeC,
Rutherford Appleton Laboratory

G4MICE Status and Plans

- (Prioritised list of) Deliverables
- Work to date
- Issues
- Code infrastructure
- Work plan
- Resources

1. Global reconstruction

- Track fitting
- Particle identification
- Capable of working with any subset of detectors
- Online and offline

2. Calibration application(s)

Generate a calibration from experimental data

3. Tracking simulation of MICE

- At arbitrary level of detail
- Model fields and detectors
- NOT implementation of geometry

Deliverables (2)

4. Physics analysis tools

- Extraction of accelerator physics parameters of interest from beam data (emittance, Twiss parameters, probably some more stuff)
- Statistical manipulations (weighting, cuts, particle selection)
- Transport mapping

5. Data quality check

- Histogramming of DAQ output
- Online and offline

6. Electronics model of MICE detectors

7. Fast simulation of MICE (transport matrices)

- Envelope pushing
- Response matrix calculation

8. Event display

- Display of monte carlo output
- Display of reconstruction output

Corollaries

QA process essential to:

- Prove code works
- Bug diagnosis and fixing tool
- Manage developer turnover
- > 50% of coding effort is to make tests and fix bugs

Documentation

- Essential
- Support users
- Manage developer turnover
- Manage developer cross-talk
- Geometry model
 - G4MICE team will not provide manpower to develop geometry model of MICE
 - We will work closely with whoever develops this model to ensure that UI is suitable and code has appropriate functionality

Work to Date

- To date we have reasonably complete
 - Tracking simulation of MICE
 - Electronics model
 - Physics analysis tools
 - Calibration applications
- Partially implemented
 - Fast tracking
- We are missing
 - Global reconstruction
 - Event display
- Crucially
 - Testing is mostly non-existent
 - > 50% of coding effort is to make tests and fix bugs

Issues

- General code infrastructure issues (1 = most severe)
 - 1. We don't know if the code works
 - Testing is patchy or non-existent
 - 2. We can't make a release
 - Tests which do exist are fragile
 - 3. We have no global reconstruction
 - 4. Developers leave and all their work is lost
 - Poor code documentation
 - No regression testing
 - Little unified style
 - 5. Development by different developers is duplicated or incompatible
 - Poor planning
 - Lack of management
- I am taking steps to address each of these issues

Code Infrastructure (1)

- Coding guidelines
 - Code must be written in a unified style
 - Code must be documented
- Unit testing
 - Each function must have a test associated with it
 - Tests must be reasonably complete
 - Aim for 100% test coverage
- Overall testing
 - Physics validation
 - Integration tests (does this app talk correctly to that app)
 - Load tests
 - GUI tests
 - User acceptance tests

Code Infrastructure (1)

- Rules
 - New code must obey coding guidelines
 - New code must have unit tests
 - QA manager will enforce these rules
 - Code that does not obey these rules is not eligible for release
 - Propose: Code that is not in a release is not eligible for publication
 - Theses or papers
 - Need endorsement from collaboration of this requirement

Code Infrastructure (2)

- Issue tracking
 - A list of open bugs and development items in progress
- Wiki
 - User level documentation
 - Developer level documentation
 - Installation instructions
 - Other information
 - Phone meetings
- Mailing lists
 - Two new mailing lists
 - g4mice-users@jiscmail.ac.uk for user support
 - g4mice-devs@jiscmail.ac.uk for developer communication
- Regular biweekly phone meetings
- Face-to-face meetings

Global Reconstruction

- Global Reconstruction task has been allowed to stall
 - Individual detector reconstructions exist
 - But probably not compatible
- Task is
 - Refactor detector reconstructions into a global framework
 - Testing of existing code
 - Implementation of global track fitting and PID
- Critical Issue
 - No one at a senior level with appropriate experience in G4MICE team
- Issue
 - RecPack does pattern recognition using Kalman filter
 - T2K pattern recognition code
 - RecPack documentation is poor
 - RecPack seems to be unsupported

Summary Work Plan

- Detailed work plan is in progress but not yet ready
- Work estimates below
 - Highly dependent on who is performing the task
- Unit tests of existing code (~18 months)
 - Probably involves some refactoring work
- Global reconstruction (~18 months)
 - Refactor detector reconstructions into a global framework
 - Implementation of global track fitting and PID
 - System tests
- Tracking simulation (~4 months)
 - Spill structure
 - Input beam
 - Updated physics list
 - System tests

Summary Work Plan

- Electronics model (~2 month)
 - Soft code all cabling information
 - System tests]
- Physics analysis tools (~4 months)
 - Weighting tools
 - Mapping tools
- Event display (~6 months)
 - Display of hits
 - Display of geometry
 - Display of trajectories
 - Display of envelopes
- Detector calibration (?)
- Online Interfaces and Controls (~6 months)

Summary Work Plan

- Fast simulation (matrix pusher) (~6 months)
 - Calculation of matrix by field derivative
 - UI for material model
 - Material types and geometries
 - Code refactoring
- Infrastructure (~4 months)
 - Config DB Interface
 - File IO system
- Management (~2 month/year over 4 years)
 - Release management
 - Regression testing
 - Infrastructure and support
- Total 76 months + ?
 - Some work can be prioritised out
 - Some jobs have probably been missed off the list

Resources

- Historically, G4MICE team has maintained about 2-3 FTE
 - Typically senior post-doc manager
 - Post-docs and graduate students as work force
- Critical Issue
 - Detector team dissolves Spring next year
 - Contracts expire, students graduate
 - This is sometimes poorly documented and tested code
 - Back to square one
 - Overall manpower severely reduced
- My effort must be concentrated on accelerator side
 - Funding comes from generic Neutrino Factory R&D

Summary

- By my estimation, G4MICE is about 50% "complete"
 - After 8 years work
- Major hole is global reconstruction
 - With current manpower it will not be possible to develop global reconstruction algorithm
 - No 6D emittance measurement
 - Limited PID
- Major hole is testing
- Serious mismatch of manpower, experience to task in hand
 - High risk to MICE goals