Are our students studying smart? Insights into the study strategies and metacognitive awareness of undergraduate students in Spain and the UK

Suzanne Fergus,

University of Hertfordshire, UK

Alberto Notario,
Yolanda Diaz-de-Mera
Universidad de Castilla La
Mancha, Spain

Meaningful Learning

1. Well organised, relevant knowledge structure
2. Seeks relationships between new and existing concepts
3. Little relevant knowledge structure,

Rote learning

poorly organised
2. Lacks integration of new and existing knowledge

[^0]Bretz, S. L. (2001). Novak's theory of education: Human constructivism and meaningful learning. Journal of Chemical Education, 78(8), 1107.

Retrieval Practice

Actual Performance

The testing effect - after an initial study period, taking a practice test improves long-term retention compared to not taking a test and compared to restudying the learning material.

Karpicke, J. D., \& Blunt, J. R. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. Science, 331,

Distributed practice

Cepeda, N. J., et al. (2008). Spacing effects in learning: A temporal ridgeline of optimal retention.
Psychological Science 19(11): 1095-1102.
Rohrer, D., Dedrick, R. F., Hartwig, M. K., \& Cheung, C.-N. (2020). A randomized controlled trial of interleaved mathematics practice. Journal of Educational Psychology, 112(1), 40

The Learning Scientists https://www.learningscientists.org/

- Paper-based questionnaire Food Science and Technology (1st year Spain), Chemical Engineering (2 $2^{\text {nd }}$ year Spain), Pharmaceutical Science ($1^{\text {st }}$ year UK) and Pharmacy (2 ${ }^{\text {nd }}$ year UK)
- Time window of survey during 2019/2020 - between October 2019January 2020
- The sample of 135 students were as follows: $1^{\text {st }}$ year UK ($n=34$), $1^{\text {st }}$ year Spain, $(n=16), 2^{\text {nd }}$ year UK, $(n=49)$ and $2^{\text {nd }}$ year Spain, $(n=36)$

Question	Answer Options	Number of students in Spain/number responding to item (\%)	Number of students in UK/number responding to item (\%)	p-value*

Key for Table: *Chi-squared test, \#Fisher's exact test.

Question	Answer Options	Number of students in Spain/number responding to item (\%)	Number of students in UK/number responding to item (\%)	p-value*
Q2. How do you decide what to study next?	Whatever's due soonest/overdue	24/52 (46.2)	63/83 (75.9)	<0.001
	Whatever I haven't studied for the longest time	1/52 (1.9)	8/83 (9.6)	0.153\#
	Whatever I find interesting	1/52 (1.9)	3/83 (3.6)	1.000\#
	Whatever I feel like I'm doing the worst in	15/52 (28.8)	13/83 (15.7)	0.066
	I plan my study schedule ahead of time, and I study whatever I've scheduled	13/52 (25.0)	10/83 (12.0)	0.051

Key for Table: *Chi-squared test, \#Fisher’s exact test.

Question	Answer Options	Number of students in Spain/number responding to item (\%)	Number of students in UK/number responding to item (\%)	p-value*

Key for Table: *Chi-squared test, \#Fisher's exact test.

Study Strategies regularly used

Study Strategies regularly used

Study Strategies regularly used

Study Strategies regularly used

Make diagrams, charts, or pictures

Number of responses (percentage) for students in Spain	Number of responses (percentage) for students in
UK	

p value 40/82 (48.8) <0.001

Study Strategies regularly used

Study Strategies regularly used

Implications of findings

A lecturer's inside guide to BOOST your grades

Suzanne Fergus

For Students

Training on metacognitive awareness and evidence-based study strategies

For Instructors

Debunk education myths e.g learning styles
Increased metacognitive awareness to include within teaching

[^0]: Novak, J. D. (2002). Meaningful learning: The essential factor for conceptual change in limited or inappropriate propositional hierarchies leading to empowerment of learners. Science Education, 86(4), 548-571.

