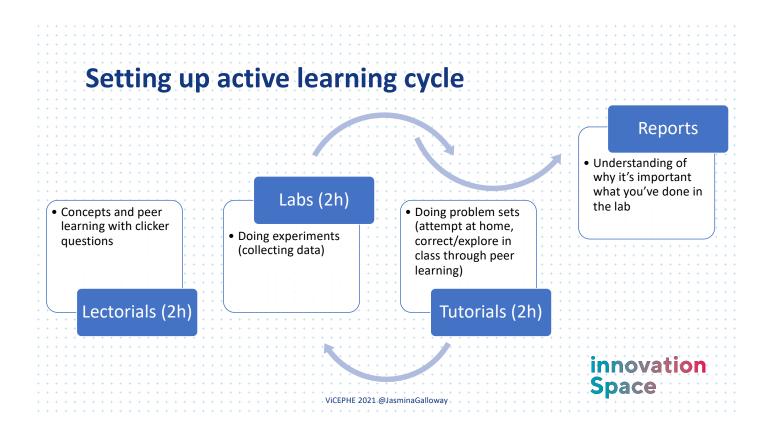


Space

 Covers: Newtonian mechanics, Electromagnetism (previously Waves & Optics), and Quantum Mechanics
 VICEPHE 2021 @JasminaGalloway

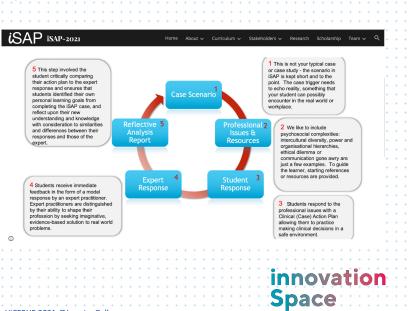
Usual set-up of the co	urses:
Lectures – information transfer	
Tutorials – working on problem sets related to concepts from the lectures	Assessed via the mid- semester test and exam (80%) We are assessing different skills, but the reasoning used should be the same!
Labs – learning about experimental side of physics – and uncertainties, uncertainties	Assessed via lab reports (20%) PHE 2021 @JasminaGalloway

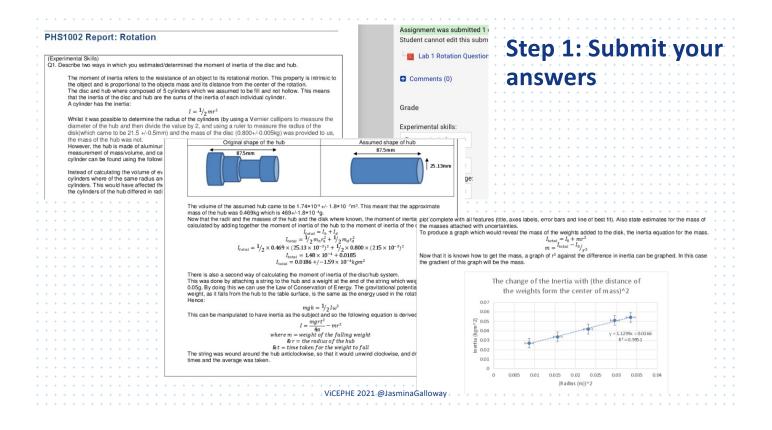


Novice versus Expert Problem Solvers

Novices and experts approach problems very differently. Broadly speaking, distinctions between their approaches include:

N ovices	Experts					
• Memorize how to solve specific problems.	 Believe that you can solve most problems by					
Ex.: "Use $mgh = \frac{1}{2}mv^{2}$ "	memorizing only a few central principles. Ex.: "Use conservation of Energy"					
 Identify problems in terms of surface	 Identify problems using principles by which					
elements.	you can solve them.					
Ex.: "This is an inclined plane problem."	Ex.: "This is a friction and gravity problem."					
 Believe that most problems are too difficult for them to solve. 	 Are confident that they can solve problems, work a long time before giving up, and do not believe that this is a waste of time. 					
 Do not think about how they solve problems	 Are able and willing to evaluate their own					
but instead just plow through them.	thinking.					
 Move on to the next problem without	 After solving problems, review why the					
considering possible connections between	question was important, asking why the					
them or the concepts that may inform them.	professor gave the assignment.					

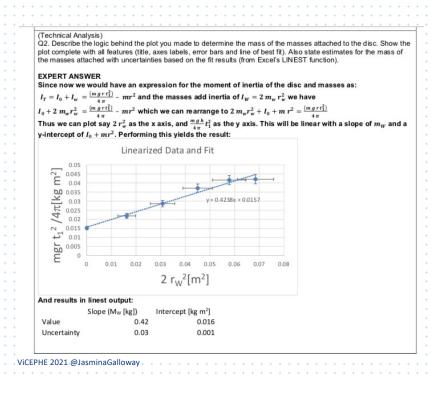



ViCEPHE 2021 @JasminaGalloway

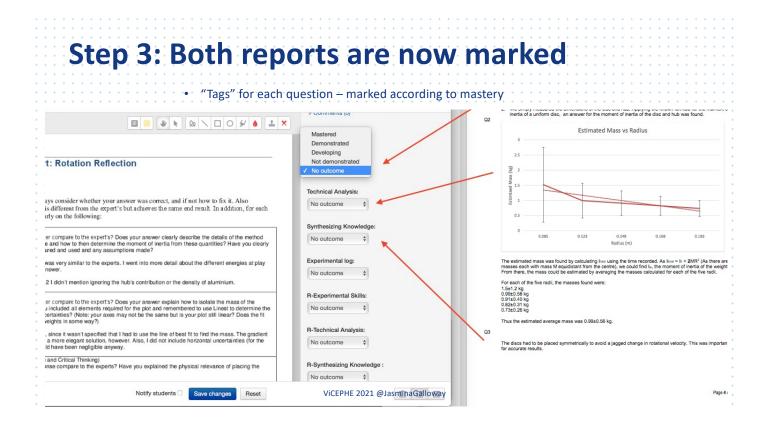
Using dual feedback

Integrating Science and Practice (iSAP): An Interactive Case-Based Clinical Decision-Making Radiography Training Program

Williams, I., Schliephake, K., Heinrich, L. M., & Baird, M. A. (2017)



Questions are "tagged":


(Experimental Skills) Q1. Describe two ways in which you estimated/determined the moment of inertia of the disc and hub.	+ · · · · · · · · · · · · · · · · · · ·	* * * *	+ + + + + + + + + +	+ + + + + +	· · · · · · · · · · · · · · · · · · ·	· + · + · +	+ + + + + + + + + +	· + · + · +	+ + + + + + + + + +	+ + + + + +	+ + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + +
(Technical Analysis) Q2. Describe the logic behind the plot you made to determine the mass of the masses attached to the disc. Show the plot complete with all features (title, axes labels, error bars and line of best fit). Also state estimates for the mass of the masses attached with uncertainties based on the fit results (from Excel's LINEST function).	* * * * * * * * *	* * * * * * * * * *	+ + + + + + + + + + + + + + + + + + +	* * * * * * * * * *	+ + + + + + + + + + + + + + + + + + + +		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ + + + + + + + + + + + + + + + + + +		* * * * * * * * * * * * * * * * * * *
(Synthesizing Knowledge and Critical Thinking) Q3. Why was it important that the weights be placed on the disc symmetrically?	* * * * * * *	• • • • • • • • • • • •	* * * * * * * * * * * *	+ + + + + +	+ + + + + + + + + + + +	* * * * * * *	+ + + + + + + + + + + + + + + + + + + +		+ + + + + + + + + + + + + +	+ + + + + + +	• • • • • • • • • • • • • • • • • • •	* * * * * * *	• • • • • • • • • • •
	* * * * * * *	* * * * * * *	- i - i - i - i - i - i - i - i - i - i	S 1	n Da					+ + + + • •	• • • • • • •	+ + + + + + + + + + + + + + + + + + + +	· · · · · · · · · · · · · · · · · · ·
+ + + + + + + + + + + + + + + + + + +	* *	+ +	* *	+	11				11	+	+ +	1	* *

Step 2: Read an explanation from an "expert" and reflect:

Reflection Questions:

(Experimental Skills) Q1. How does your answer compare to the expert's? Does your answer clearly describe the details of the method including what to measure and how to then determine the moment of inertia from these quantities? Have you clearly identified variables measured and used and any assumptions made?	* * * * * * * *		. + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +		· + + + + + + + + + + + + + + + + + + +		* * * * * * * * *		* * * * * * * * *	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	* * * * * * * *	· + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +
(Technical Analysis) Q2. How does your answer compare to the expert's? Does your answer explain how to isolate the mass of the weights added? Have you included all elements required for the plot and remembered to use Linest to determine the line of best fit and the uncertainties? (Note: your axes may not be the same but is your plot still linear? Does the fit provide the mass of the weights in some way?)	* * * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * *	* * * * * * + + + * * *	* * * * * * * * * * * * *	• • • • • • • • • • • • • • • • • • • •	* * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * * *
Synthesizing Knowledge and Critical Thinking) Q3. How does your response compare to the experts? Have you explained the physical relevance of placing the weights symmetrically?	* * * * * * * * *	* * * * * * * * * * *		÷.		n a			a	ti ti	0	n		* * * * * * * * * * * * * * * *

Submit Report W3		-	-	Students can easily
Content knowledge: spectrum	Demonstrated	Not demonstrated- Mastered	Demonstrated (218)	see the level of
Content knowledge: light	Mastered 👞	Not demonstrated- Mastered	Mastered (218)	their mastery in
C Reasoning skills	Developing	Not demonstrated- Mastered	Demonstrated (218)	Moodle gradebook
Cobservational skills	Mastered	Not demonstrated- Mastered	Demonstrated (218)	
Synthesising Knowledge	Not demonstrated	Not demonstrated- Mastered	Demonstrated (218)	(and compare how they've done in respect
C Problem Solving Skills	Mastered	Not demonstrated- Mastered	Demonstrated (218)	to the rest of the cohort)
$\bar{\mathcal{K}}$ Workshop 3 total grade (/18) Simple weighted mean of grades. Include empty grades.	12.00	0–18	11.65 (238)	
Workshop 4				innovation
Submit Report W4				Space

Rubric is simple (on purpose)

What are we looking for in the answers to	reports' questions:		
Mastered	Demonstrated	Developing	Not demonstrated
Adressed all the points of	Adressed all the of	Neglected to provide support for	No response OR missed the point of the
Physics/Method/Interpretation, in	Physics/Method/Interpretation with	comments about	question.
sufficient detail, with evidence/support,	evidence and support, but with occasional	Physics/Method/Interpretation or missing	 Construction
and good clarity.	lack of clarity, or with minor error in	some key ideas of the	
	calculations or processing of evidence OR	Physics/Method/Interpretation, OR good	
	good answer to slightly misinterpreted	answer to totally misinterpreted question,	
	question.	OR decent answer to a slightly	
	5.	misinterpreted question.	
What are we looking for in the reflections			
Mastered	Demonstrated	Developing	Not demonstrated
Noted similarities in concepts and did not	Noted similarities in	Noted some similarities and differences,	No response, or a response that focused
emphasize irrelevant differences, noted	Physics/Method/Interpretation, but also	but didn't notice or highlight some	only on irrelevant details of presentation
differences in	worried about irrelevant differences, or	fundamental differences in	instead of noticing glaring differences in
Physics/Method/Interpretation present in	didn't notice a small but important	Physics/Method/Interpretation.	Physics/Method/Interpretation.
original answer or all such differences	difference in	35 363	85 863
noted and understood.	Physics/Method/Interpretation.		
* * * * * * * * * * * * * * * *			
+ + + + + + + + + + + + + + + + + + + +		+ + + + + + + + + + + + + + + + + + + +	innovat
* * * * * * * * * * * * * * * *		+ + + + + + + + + + + + + + + + + + + +	
			Space

ViCEPHE 2021 @JasminaGalloway

and dual feedback	
Students are provided with dual feedback (Laurillard 2012):	
 their <i>intrinsic</i> feedback from the comparison, and <i>external</i> feedback from the instructor on both their original answers, as well as their reflection 	
ViCEPHE 2021.@JasminaGalloway	innovation Space

	* * * * * * * * * *	• • • • • • • • • • •	* * * * * * * * *	* * * * * * * * * * * * * *
ve themes identified from student re	sponses to) open-end	led survey	questions:
/hich aspect(s) of this unit did you fin	id most eff	ective?	· · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •
	* * * * * * * * * *	* * * * * * * * * *	· · · · · · · · · · · ·	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Old way	1 st run	2 nd run	· · · · · · · · · · · · · · ·
	2016	2017	2018	* * * * * * * * * * * * *
Number of responses/number of students	65/195	102/184	153/229	• • • • • • • • • • • • • •
(per cent)	(33%)	(55%)	(67%)	+ + + + + + + + + + + + + + + + + + + +
The top 5 emerging themes for	or Q1 - what	is effective	?	* * * * * * * * * * * * * * * * * * *
Labs	15 (23%)	29 (28%)	28 (18%)	· · · · · · · · · · · · · · ·
Lab reports	n/a	5 (5%)	18 (12%)	* * * * * * * * * * * * * *
Tutorials	5 (8%)	10 (10%)	37 (24%)	· · · · · · · · · · · · · · · · · · ·
Intercative lectures/lectorials	3 (5%)	6 (6%)	31 (20%)	* * * * * * * * * * * * *
Pre-lecture videos	n/a	13 (13%)	4 (3%)	innovatio

What did students think?

 The feedback method is very impressive. Because we can find out our weaknesses and strengths in this unit.

I thought it was great that a lot of our in-class assessment had a
 *focus on demonstrating that we were in the process of learning the
 material*, i.e. the answer didn't necessarily have to be correct – as
 long as we'd made a good effort and recognised our mistakes, we'd
 get a decent grade. This took the pressure off the assignments a little,
 thus letting us have more time to focus on learning the material.

ViCEPHE 2021 @JasminaGalloway

innovation

Space

Cancel reflection reports, we are scientists not writers."