

Mini-projects: CURE-like lab projects to increase student learning

ViCEPHEC21

Dr Phil Craven

Director of Teaching Labs & Deputy Head of Education

School of Chemistry, University of Birmingham

p.craven@bham.ac.uk

Chemistry Lab Course at Birmingham

- 150 students in Years 1 and 2
- Roughly 70 in Year 3
- Timetable allows for an average one day per week per student in the lab
- Year 1 a day at a time
- Year 2 2 days every fortnight
- Year 3 a whole week at a time

- In 2018/19 moved into CTL (<u>CTL Website</u>)
- Led to major redesign of our lab course

Chemistry Lab Course at Birmingham

New Lab Course focussed on development of practical skills into research skills (Seery, 2019)

Course-based undergraduate research experiences (CUREs)

What is a CURE? Dolan (2016) summarises some of the suggestions made in papers about what constitutes a CURE **N.B.** there is no consensus!

Advantages of CUREs:

- 1. Cognitive gains such as increased content knowledge, improved understanding of the nature of science, or skill development, including analytical, technical, collaboration, communication, and experimental design skills;
- **2. Psychosocial gains** such as increased confidence, self-efficacy, project ownership, sense of community, and scientific identity, as well as more frequent and fruitful interactions with faculty;
- **3. Behavioral gains** such as staying in a science major, pursuing additional research opportunities, or enrolling in graduate school; and
- 4. Affective and other "non-cognitive" gains such as enjoying science class more and being more motivated
- 5. Allows access to research for students from more diverse backgrounds (Eagan, 2013)

Course-based undergraduate research experiences (CUREs)

Some background reading on CUREs:

Course-based Undergraduate Research Experiences: Current knowledge and future directions – Dolan (2016)

- good summary of CUREs in chemistry and life sciences, contains examples of CUREs from variety of institutions
- https://sites.nationalacademies.org/cs/groups/dbassesite/documents/webpage/dbasse_177288.pdf

Assessment of Course-Based Undergraduate Research Experiences: A Meeting Report – Auchincloss (2014)

- Summary of a meeting of CUREnet (a network of biology academics interested in CUREs) discussing logistics and assessment of CUREs
- CBE-Life Sci. Educ. 2014, 13, 29–40 (https://doi.org/10.1187/cbe.14-01-0004)

The Laboratory Course Assessment Survey: A Tool to Measure Three Dimensions of Research-Course Design – Corwin (2015)

- Describes in-depth development of Laboratory Course Assessment Survey (LCAS) for monitoring students interaction with CUREs
- CBE-Life Sci. Educ. 2015, 14:ar37, 1–11 (https://doi.org/10.1187/cbe.15-03-0073)

Characteristics of Excellence in Undergraduate Research – edited by Hensel (2012)

- Collection of essays on undergraduate research
- https://www.cur.org/assets/1/23/COEUR_final.pdf

Mini-projects: Logistics for students

Activity Assessment Week 3 – Research workshop Semester 50% of module Week 5 – One-week mini-project Poster + Supervisor Mark Week 8 – Writing workshop 1 Chem Commun paper 1 50% of module Week 9 – One-week mini-project + Supervisor Mark Week 7 – Two-week mini-project (1st week) 7 Semester Week 8 – Writing workshop 2 Chem Commun paper 2 Week 9 – Two-week mini-project (2nd week) 100% of module + Supervisor Mark

- Students also meet with supervisors in weeks before and after the mini-project weeks to plan and debrief
- Workshops help explain the assessment to the students
- Broken into three mini-project to allow for feedback to improve future performance

Exemplar Mini-projects: Critical Micelle Concentrations

Aim: Can bench-top NMRs be used to determine critical micelle concentrations?

- Usually measured using techniques such as conductivity or UV
- Can NMR prove as useful potentially even more so?

NMR gives good approximation to the CMC for two surfactants

Physical parameter	CPC CMC (mM)	DPC CMC (mM)	
T ₁ relaxation	0.65		
T ₂ relaxation	0.72	16.27	
UV (EE)	1.02	13.26	
UV (Fluorescein)	(#)	10.36	
Conductivity	1.02	18.66	
Conductivity (EE)	1.20	17.05	
Literature values	0.90 ²	14.9 ³	

NMR identified a phase change in the micelles not picked up by — traditional methods

Exemplar Mini-projects: Upcycling Plastic Waste

Aim: Can we improve the efficiency of plastic recycling?

- Building on Prof Andrew Dove's work on recycling plastics
- Students are given free reign to explore the area based on their own ideas

Scheme 3: Depolymerisation of BPA-PC and PET with a nucleophile where R = O/NH. Schemes carried out with aliphatic nucleophiles yielding a heterocycle and (aromatic) nucleophiles yielding a (diphenol derivative). Monomers include a BPA and a BHET derivative (see table 4)

Group 2 – Can BPA-PC be recycled selectively in presence of PET

Table 3 BPA and BHET derivative yields from BPA-PC depolymerisation reactions

Entry	Nucleophile	T (°C)	Time (h)	BPA yield (%)*	BHET derivative (%)*
1	1A	190	24	73	25
2	2A	190	24	76	32
3	3A	190	24	52	3
4	4A	190	24	22	13

^{*} Yields calculated from 1H NMR using TBD:MSA as an internal standard

Mini-projects: Student Feedback

Over the course of the mini-projects, students understanding of the skills required for research increased

Mini-projects: Student Feedback

Their confidence also increased – importantly not linked to the mini-projects seeming easier

Over the course of the mini-projects, students understanding of the skills required for research increased

Mini-projects: Student Feedback

Sample of student quotes:

"The last two years of labs makes sense now"

"I didn't know that this is what physical chemistry was, I understand why people like it now"

"I now know what subject I want to research now" – student went on to do Masters in Polymer chemistry in Europe

- Student survey shows the students enjoyed their mini-projects and found it increased their interest in science and the subject area of their mini-project
- Also highlights the students learnt about the process of scientific research

References & Acknowledgements

Eagan M. K., Hurtado S., Chang M. J., Garcia G. A., Herrera F. A., Garibay, J. C. (2013). Making a Difference in Science Education: The Impact of Undergraduate Research Programs *Am. Ed. Res. J. 50*, 683–713. https://doi.org/10.3102/0002831213482038

Dolan, E. J Course-based Undergraduate Research Experiences: Current knowledge and future direction 2016, <a href="https://sites.nationalacademies.org/cs/groups/dbassesite/documents/webpage/

Seery M. K., Agustian H. Y., Zhang X. (2019). A Framework for Learning in the Chemistry Laboratory. *Israel Journal of Chemistry*, *59*, 546–553. https://doi.org/10.1002/ijch.201800093

Development Support

Prof Rachel O'Reilly – Head of School Dr John Snaith – Head of Education Dr Robert Laverick – Teaching Fellow

CTL Staff

Dr Cheryl Powell – Wet Lab Manager
Dr Charles Manville – Wet Lab Technician
Dr Leticia Millward – Wet Lab Technician

Academic supervisors

Prof Tim Albrecht – Monitoring Enzyme Kinetics
Dr Phoebe Allan – Optimising Battery Composition
Dr Tamas Bansagi – Enzyme Nanoreactors
Dr Melanie Britton – Determination of CMC
Dr Dwaipayan Chakrabati – Global Optimisation

Dr Liam Cox – Drugs against Neglected Diseases initative Dr Paul Davies – Optimisation of an Organocatalytic Aldol

Prof Andrew Dove – Upcycling of Plastic Waste

Dr Sarah Horswell – Langmuir Troughs

Dr Amanda Pearce – Antimicrobial Polymers

Prof Zoe Pikramenou – Analysis of Lanthanide Complexes

Dr Zoe Schnepp – Developing Outreach Activities

Dr Ian Shannon – Macrocyclic Synthesis

Dr John Snaith – Determination of Reaction Mechanism

Prof Peter Slater – Synthesis and Analysis of Apatite Pigments

Prof Jim Tucker – Dopamine Sensing

Dr Adrian Wright – Main Group Catalysis for Sequestering CO₂

