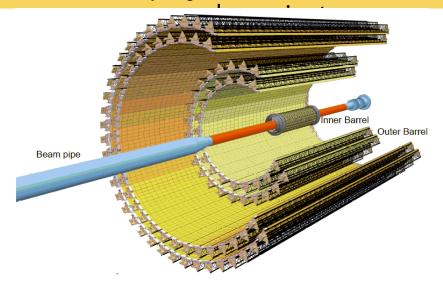


ALICE-THAILAND MEETING SUT:ACTIVITIES AND PLANS

Asst. Prof. Dr. Chinorat Kobdaj and SUT Team


Nuclear and Particle Physis Group School of Physics, Institute of Science Suranaree University of Technology April 1, 2021

Collaboration background

Research project with ALICE ITS2

presided signing laterial budget lata analysis characterization

Collaboration Background of Thailand

SUT Students

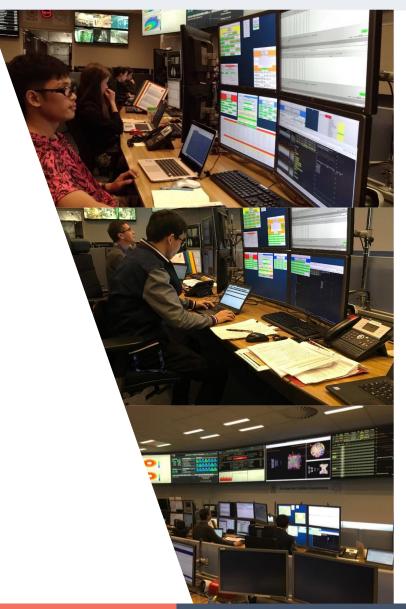
- 1) Parinya Namwongsa / M.Sc / Geometry description of the ALICE Inner Tracking System (ITS) upgrade
- 2) Natthawut Laojamnongwong/ M.Sc./ Sensor characterization of pALPIDE chip
- 3) Wanchaloem Poonsawat/ Ph.D./ Detector response simulation of the ALICE ITS upgrade
- 4) Adisorn Ditjaroen / B.Sc./ The study of X-ray and gamma radiation exposure effect on silicon active pixel sensor using TCAD simulation
- 5) Anantachai Lakrathok/ M.Sc./ Sensor characterization of pALPIDE chip
- 6) Sakdinan Naewsupab/ M.Sc./ Study of high resistivity silicon wafer for ALICE pixel detector
- 7) Jetnipit Kaewjai/ M.Sc./ Upgrade of pixel sensor telescope for the characterization of ALPIDE sensors
- 8) Tawanchat Srimantathummakun / M.Sc./ Analysis of chamonium production in pp collision

SUT-ALICE Duties

 3 Shifters of SUT were working at ALICE

Parinya Namwongsa

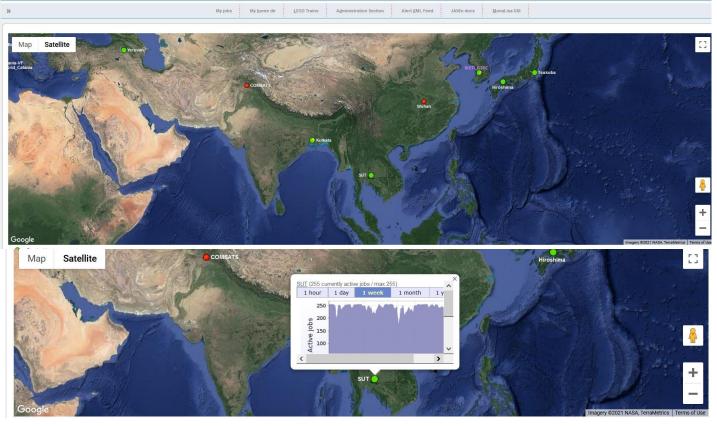
Anantachai Lakrathok



We have done 10 shifts for 5 years.

ITS2 commissioning Jetnipit Kaewjai

ALICE GRID site in Thailand


 Collaborate with National Electronics and Computer Technology Center (NECTEC) to setup a Grid site for ALICE@SUT as part of the Thailand National

Science Infrastructure Consort

SEAGATE

Active jobs in SUT

256 Cores IBM x3755 M3

Internet Connectivities

→ 901 Mbps

→ 36.7 Mbps

→ 467 Mbps

→ 630 Mbps

→ 713 Mbps

← n/a

←n/a

← n/a

←n/a

← n/a

perfS NAR Toolkit on perfsonar-alice.sut.ac.th

perfsonar-alice.sut.ac.th at 202.28.43.143, 2001:3c8:c301:17::3

Site: Suranaree University of Technology

V »

Address: Nakhon Ratchasima, Nakhon Ratchasima 30000 TH (map)

Administrator: Chinorat Kobdaj (kobdaj@g.sut.ac.th)

Alternative views: Chart | Map

10. 3906792 BITP

MonALISA Repository for ALICE

<SUT>

Edit

perfsonar-alice.sut.ac.th ring Agents using a Larg Graphs | Traceroute &

perfsonar-alice.sut.ac.th 202.28.43.143

Graphs | Traceroute @

perfsonar-alice.sut.ac.th

Graphs | Traceroute ♂ perfsonar-alice.sut.ac.th

2001:3c8:c301:17::3

2001:3c8:c301:17::3

202.28.43.143

202.28.43.143

Graphs | Traceroute ☑

perfsonar-alice.sut.ac.th

Graphs | Traceroute ♂

perfsonar-alice.sut.ac.th

Graphs | Traceroute @

ps02.iihe.ac.be 193.58.172.57

2001:3c8:1501:298::1501:4

psb01.pic.es

203.30.39.12

2001:67c:1148:202::2

nms1-10g.jp.apan.net

ps-gsdc02.sdfarm.kr

203.181.249.186

134.75.125.242

bwctl-10g-ps.singaren.net.sg

⇒ 523 Mbps ←n/a

My jobs

My home dir

LEGO Trains Administration Section

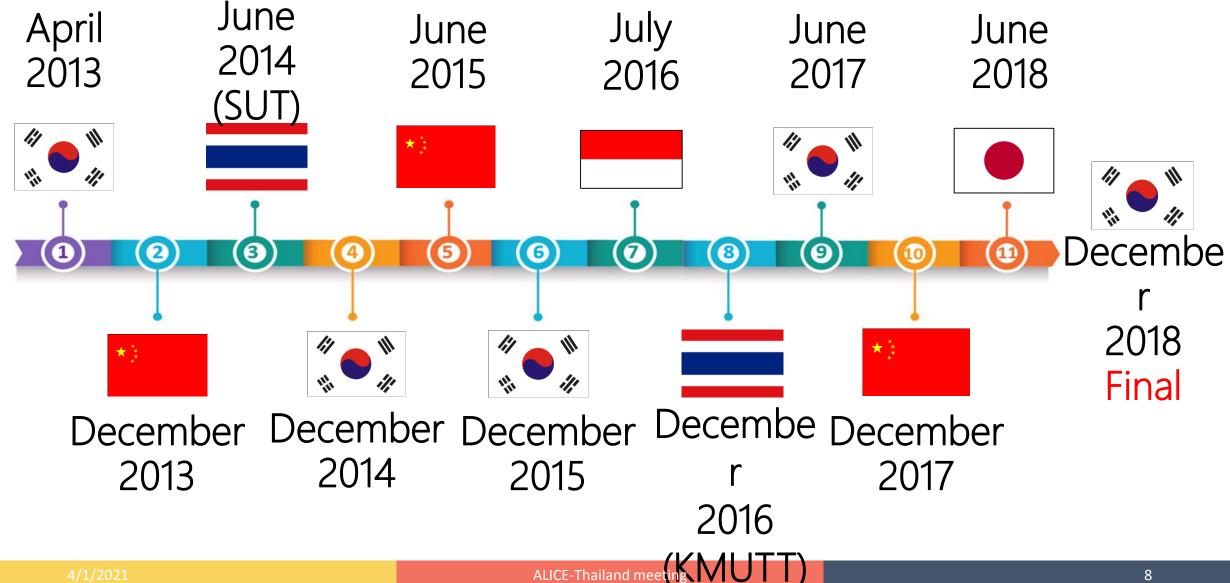
176.17 13 221.71

Alert XML Feed

JAliEn docs

MonaLisa GUI

Links: FDT, Kernel parameters tuning


IN from							
No.	ID	Site	When	Speed (Mbps)	Hops	RTT (ms)	Streams
1.	2315863	NECTEC	23 Oct 2015 23:17	864.07	8	5.48	1
2.	1976476	KISTI-CREAM	19 Oct 2014 21:49	327.17	12	158.67	1
3.	4052792	KISTI_GSDC	28 Mar 2021 15:50	276.84	13	89.73	i i
4.	2272091	LLNL	07 Sep 2015 06:44	226.50	15	247.40	
5.	3939345	Grenoble	18 Nov 2020 09:34	201.34	16	247.81	
6.	3952045	IPNL	02 Dec 2020 16:05	201.34	16	244.87	
7.	4053640	Tsukuba	29 Mar 2021 14:49	201.34	16	123.92	
8.	4054766	Hiroshima	30 Mar 2021 21:52	192.95	13	127.28	5
9.	3754845	Wuhan	30 Apr 2020 02:21	184.56	27	125.17	
10	3906792	RITP	13 Oct 2020	176 17	13	221 71	

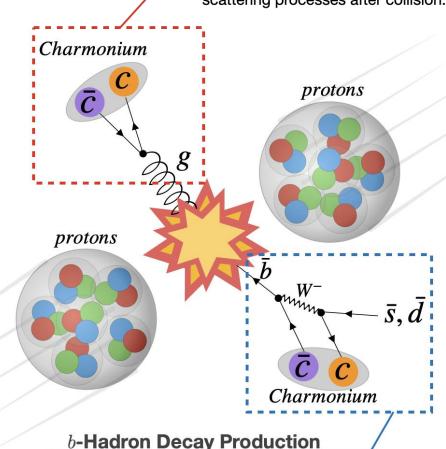
OUT to							
No.	ID	Site	When	Speed (Mbps)	Hops	RTT (ms)	Streams
1.	2313091	NECTEC	21 Oct 2015 00:12	738.24	8	5.41	1
2.	4052185	KISTI_GSDC	27 Mar 2021 22:02	302.01	13	102.62	1
3.	4002039	WUT	29 Jan 2021 01:10	234.89	16	213.96	1
4.	3946214	IPNL	26 Nov 2020 01:37	218.12	17	242.65	1
5.	3946092	Legnaro	25 Nov 2020 22:19	209.73	18	254.18	1
6.	4050966	Tsukuba	26 Mar 2021 12:29	209.73	17	121.93	1
7.	3935013	Grenoble	13 Nov 2020 13:19	201.34			1
8.	2956187	Cagliari	13 Oct 2017 07:49	184.56	16	341.80	1
9.	3690639	Prague_ARC	20 Feb 2020 04:01	184.56	15	293.21	1
10.	4053369	Hiroshima	29 Mar 2021 07:13	167.78			1

ALICE-Thailand meeting

Asian ALICE ITS upgrade, MFT and O² meetings

ITS3 Contributions

- SUT has already obtained financial support for 5 years (2020-2024)
- We are interested in
- 1. ALICE Physics Analysis of Charmonium Production in pp Collision at $\sqrt{s}=13$ TeV in ALICE at the LHC
- 2. Upgrades and Detector R&D
 - 2.1. Monolithic Pixel design
 - 2.2. Bent ALPIDE characterization with e beam with SLRI BTF
 - A) Beam test analysis with Corryvreckan
 - B) Rotational stage design (Solidwork) and ALPIDE holder


1. ALICE Physics

Analysis of Charmonium Production in pp Collision at $\sqrt{s}=13$ TeV in ALICE at the LHC

Prompt Production

Prompt Production occurs in initial hard scattering processes after collision.

Non-Prompt Production comes from the electroweak decays of bottom-hadron

Mr. Tawanchat Simantathammakul

Ph.D student in nuclear and particle physics from SUT.

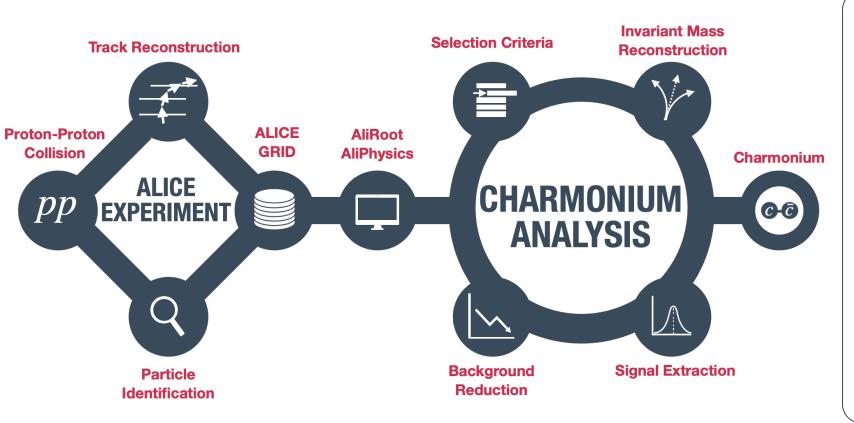
Dr. Benjamin Dönigus

Researcher from Goethe-University, Frankfurt, Germany.

Asst. Prof. Dr. Christoph Herold

Lecturer in nuclear and particle physics from SUT.

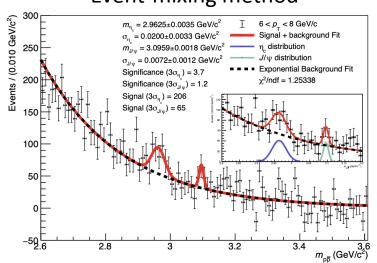
Asst. Prof. Dr. Chinorat Kobdaj


Lecturer in nuclear and particle physics from SUT.

Research Objectives

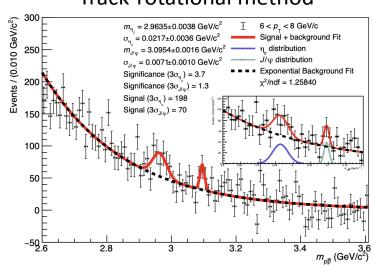
- Produce data analysis algorithm for investigating inaccessible particles with detector, such as charmed lambda baryon (Λ_c), hypertriton, and charmonium.
- Extract the inclusive production yield of charmed eta mesons (η_c) and J/ψ using the data from pp collision at \sqrt{s} = 13 TeV providing by ALICE experiment at LHC.

Invariant Mass Reconstruction of Charmonium Candidates using $par{p}$ -Channel


Analysis Procedure

- Data of pp collision at $\sqrt{s}=13$ TeV from Run 2 (2016 2018) are retrieved from ALICE GRID using AliRoot.
- Tracks of proton and antiproton for charmonium candidate reconstruction are selected via using PID in TPC and TOF with cut-base selection criteria.
- The signal of charmonium are extracted from fitting invariant mass spectrum with two different background reduction method.
 - Event-mixing method
 - Track-rotational method

Invariant Mass Spectrum of η_c , $J/\psi \to p\bar{p}$ with Two Methods of Background Subtraction



Event-mixing method

Invariant mass spectrum with integrate over p_T after background subtraction using event-mixing method.

Track-rotational method

Invariant mass spectrum with integrate over p_T after background subtraction using track-rotation method.

Signal+background distribution function

$$f(m) = C_0 exp(-\alpha m) + \frac{N_1}{\sigma_1 \sqrt{2\pi}} exp(-\frac{(m-m_1)^2}{2\sigma_1^2}) + \frac{N_2}{\sigma_2 \sqrt{2\pi}} exp(-\frac{(m-m_2)^2}{2\sigma_2^2})$$
Exponential Background η_c Distribution J/ψ Distribution

- The primary results show invariant mass spectra with two different background subtraction methods and the signal distribution described by double-gaussian.
- The fitting result of invariant mass spectrum are corresponding to PDG.

Activities Plan

Collecting Run 2 Data

Develop Classical Analysis Tasks

2020

Testing and provide primary results

2021

Report 20 Jpsi2ee PAG

Confirm results with MC simulation

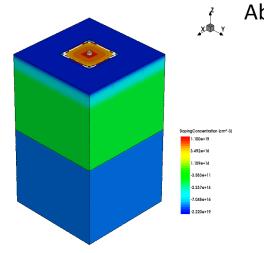
2022 - 2024

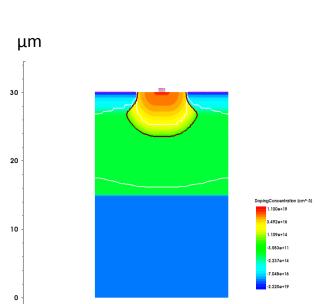
Develop modern analysis method with ML

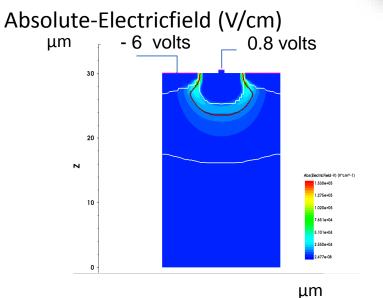
Investigate more particle species

Ready for publication

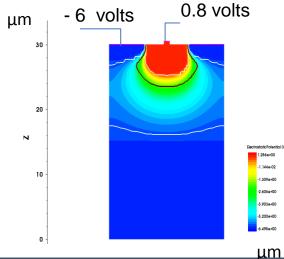
2. Upgrades and Detector R&D


2.1 Monolithic Pixel design: ALPIDE like



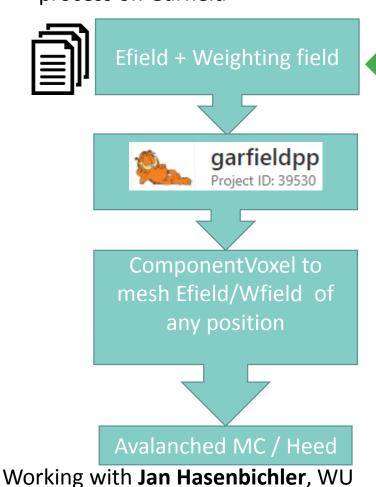

TCAD pixel design (20*20*30 μm³)

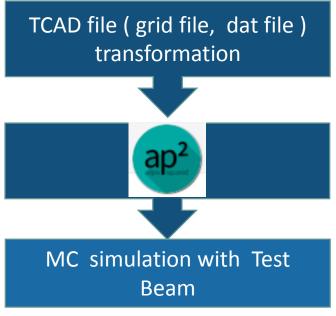
Parameters	Value
P well width	6
Spacing of P well and N well	3
N well radius	1


Туре	Doping concentratio n (cm ⁻³)	Depth (μm)	Value at depth (cm ⁻³)	Lateral factor
n+/p+	1X10 ¹⁹	0.25	1X10 ¹⁴	0.1
n/p well	1X10 ¹⁸	1.5	1X10 ¹³	0.25
Deep p well	1X10 ¹⁷	3.5	1X10 ¹²	0.4
Substrate	1X10 ¹⁸	15	constant	
Epitaxial layer	1.4X10 ¹³	15	Constant at R= 1048.5 ohm.cm	

ElectricPotential (V)

2.1 Monolithic Pixel design: ALPIDE like

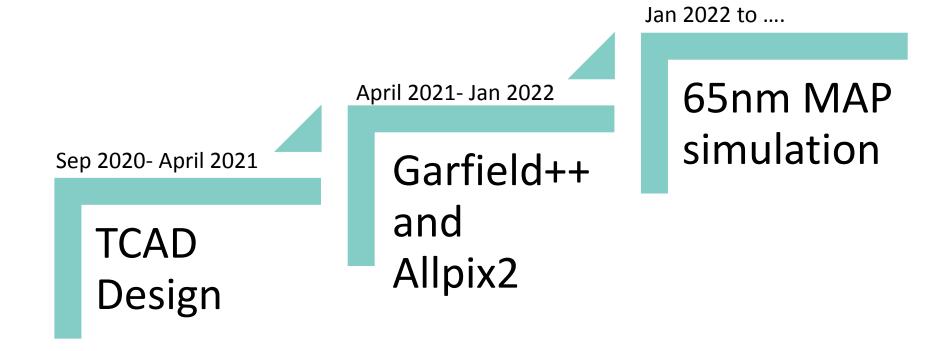



CERN open-source framework (Garfield++ and Allpix2)

 Problem: Building macro to process on Garfield++

TCAD

 Problem: learning how to import TCAD file into Allpix2



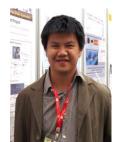
No contact for Allpix2

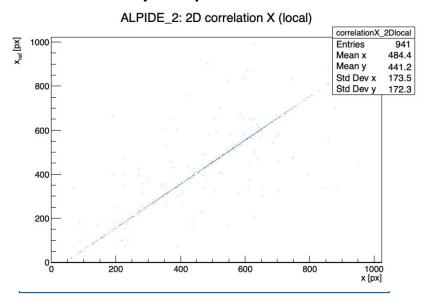
2.1 Monolithic Pixel design: Timeline

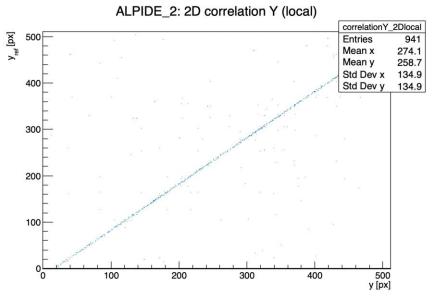
Aim to.....

Simulate this process to contribute with TCAD model of 65 nm MAP ITS3 prototype

- Design TCAD with 65 nm ITS3 prototype like
- Use 2 frameworks for simulation






2.2 Bent ALPIDE characterization with e beam with SLRI – BTF

A). Beam test analysis with Corryvreckan (6-plane)

- using the example raw data run355234406_200828234412.raw from:
 - https://twiki.cern.ch/twiki/bin/view/ALICE/GettingStartedWith TestbeamAnalysis
- the config file is 3REF-REFdut-2REF.conf (with no DUT)
- the geometry is: beam in --->> 3 REF + 3 REF --->> beam out
- the analysis processes are completed

A) Beam test analysis with Corryvreckan (7-plane)

- using the example raw data: run355234406_200828234412.raw
- the config file is 3REF-REFdut-2REF.conf with bent DUT
- the geometry has been set as presented in ITS3 WP3 Status by Riccardo Ricci

[ALPIDE_1] type = "ALPIDE" position = 0um,0um,-75.5mm number_of_pixels = 1024,512 pixel_pitch = 29.24um, 26.88um spatial_resolution = 5.00um, 5.00um time_resolution = 2us material_budget = 0.0005 coordinates = "cartesian" orientation_mode = xyz mask_file = "../masks/ref-plane1.txt" roi = [200, 100], [200, 400], [800, 400], [800, 100] # 20% of the CHIP

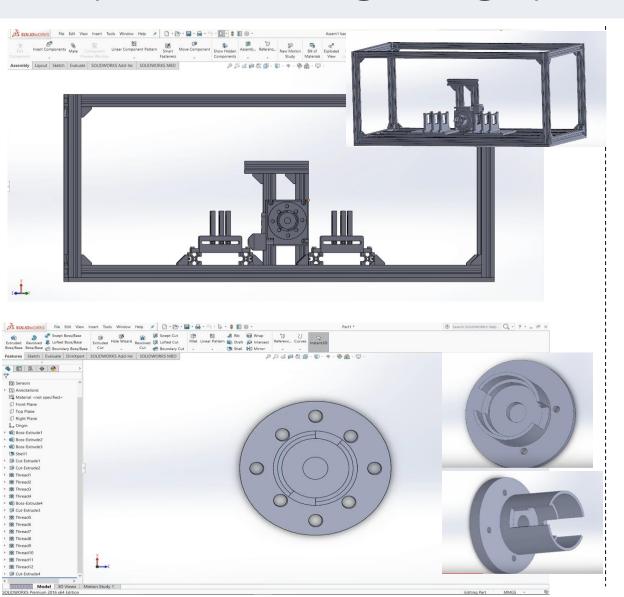
 Thanks to Pascal for the starting configuration!

```
[ALPIDE_3]
type = "ALPIDE"
position = 0mm, 0mm, 0mm
number of pixels = 1024,512
pixel pitch = 29.24um, 26.88um
spatial resolution = 5.00um, 5.00um
time resolution = 2us
material budget = 0.0005
coordinates = "cartesian-bent"
orientation = 0deg,0deg,270deg
# y 0 = 0mm # Original value of y 0
y 0 = 12.7mm # Updated coordinate
radius = 18mm
orientation mode = xyz
mask file = "../masks/dut-plane3.txt"
\# \text{ roi} = [100, 50], [100, 450], [900, 450],
[900, 50] # strict
roi = [0, 0], [0,512], [1024, 512], [1024, 0] #
wide
role = "DUT"
```

A) Technical problem

 the error -9 message occurs when analyzing the August bent ALPIDE data of DESY

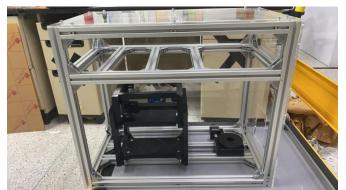
```
jobsub.analyse_run000002(INFO): |15:27:21.967| (STATUS) [I:Tracking4D] Initializing "Tracking4D"
jobsub.analyse_run000002(INFO): |15:27:21.995| (STATUS) [I:DUTAssociation:ALPIDE_3] Initializing "DUTAssociation:ALPIDE_3"
jobsub.analyse_run000002(INFO): |15:27:21.998| (STATUS) [I:AnalysisDUT:ALPIDE_3] Initializing "AnalysisDUT:ALPIDE_3"
jobsub(ERROR): Corryvreckan returned with error code -9
jobsub(INFO): Logs written to ./analyse_run000002.zip
jobsub(WARNING): There were 1 error messages reported
[root@8e0dffc3e5e4 local]#
```


the output file

```
Inlaojamn@N-Laojamnongwong output % ls
alignment_000002.root analysis_000002.root maskcreation_000002.root prealignment_000002.root
nlaojamn@N-Laojamnongwong output %

    maskcreation_000002.root prealignment_000002.root
```

B) Rotational stage design (Solidwork) and ALPIDE holder



3D printer for the ALPIDE holder construction

ALPIDE holder with Aluminium support

2.2. Plan and Equipment Needed

Study Corryvreckan and EUDAQ2

Design holder for bent ALPIDE

Prepare the SLRI-BTF for characterization of bent ALPIDE with 1 or 1.2 GeV


Analysis bent ALPIDE data of SLRI

What we need?

- 6 DAQ boards of version 3
- 2 Flex2 DAQ boards
- Bent ALPIDE prototype
- Suggestion...

Thanky