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Far-forward LHC experiments and v fluxes

*x FASER, FASERr and SND@LHC are all going to take data during LHC
Run 3.

* They will measure “events” from the convolution of
fluxes (production + propagation) and interaction o with target.

* Are we able to
?

* Predictions for v fluxes wanted !
- if we want to use interaction cross-sections for a sound nPDF program
- if we want to measure v, — v oscillation mixing parameters
- if we want to disentangle BSM signals from SM background
(e.g. heavy-neutral lepton mixing, hidden-sector DM)
- etc....

% In the following we focus on v,: why ?

- It is the “easiest” from the (p)QCD point of view.

- It is interesting from the physics point of view: only a few v have been
identified so far in experiments around the world
= Lepton Universality probes needed.....
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Not only v but even BSM fluxes wanted!

1

Fixed target pp 10° GeV [ EPOS-LHC
1 SIBYLL2.3¢

[ QGSletil-04

My = 10 MeV
12000

e

10000

, 8000

<
o

2

6000

(1/0) (do/dEy)

4000

S
o

2000

104
1 10 102 103 ° 5 3 7
Ey (Gev) loguo(Ere/GeV)

6 8

plot by S. Trojanowsky last-minute plot by J. Manshanden
FLaRE geometry, CM frame inclusive, CR LAB frame

x Example: hidden sector DM coupled to the SM through a dark photon
A" with my, < ma << Mgy .
x A" produced either by pp — ppA’ (proton bremsstrahlung) or through
pp = 70,0, ..+ X = Ay + X
from B. Batell et al. [arXiv:2101.10338]
* How reliable/uncertain are BSM particle fluxes ?

*+ Somehow similar issues as for the determination of v fluxes!
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Neutrino fluxes

+ neutrino flux from light-flavour decay:

pp — ud,s0,d35+X — at KE+LX = y(p) + 05+ X
pp — u,d,s0,d5+X — KLK +X — 7F+0F+y+X
pp — u,d,s,u,d,5+ X — light-hadron + X' — v(0)+ X"+ X’

+ neutrino flux from heavy-flavour decay:

pp — ¢, bc,b+ X —  heavy-hadron + X' — uv(p)+ X"+ X'
where the decay to neutrino occurs through semileptonic and leptonic decays:
eg. DT = efve X, DT — pty,X,
DF — v, (7;) + 7%,  with further decay 7+ — v, (7,) + X

€Ty, x+ = 180 cm, c7g k+ = 371 cm, c1p p+ = 0.031 cm

N.B. other channels of neutrino production occur in the Standard Model,
e.g. W boson and t quark production and leptonic decay,
but suppressed far-forward with respect to the previous channels.

* In our work we focus especially on neutrino fluxes from heavy-flavour:
v,+v; are mainly produced through this channel.
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Light flavour vs. heavy flavour

x Light-flavoured hadrons include only light quarks as valence quarks in
their composition.

* My, myg, ms << /\QCD

= as(m,), as(my), as(ms) >1
= Light hadron production at low p7 is dominated by non-perturbative
QCD effects.

*x Heavy-flavoured hadrons include at least one heavy-quark as valence
quark in their composition.

* Me, Mp >> /\QCD

= as(me), as(mp), <<1

= At a scale ~ mg, QCD is still perturbative. Charm is produced pertur-
batively (if one neglects possible intrinsic charm contributions from PDFs)
even at low pr, but non-perturbative effects at such low scales may also
play important roles.

* me, mp << present collider energies

= Multiscale issues, appearence of large logs.
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o(pp — cg(+X)) at LO, NLO, NNLO QCD
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data from fixed target exp (E769, LEBC-EHS, LEBC-MPS, HERA-B)
+ colliders (STAR, PHENIX, ALICE, ATLAS, LHCb).

* Assumption: collinear factorization valid on the whole energy range.
* Sizable QCD uncertainty bands not included in the figure.

* Leading order is not accurate enough for this process:
at NLO new channels open, due to gg interactions.
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Inclusive charm production: scale choices and theory
predictions vs. LHCb experimental data
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* Sensitivity to radiative corrections is smaller at a scale
UR ~ E ~ 2m. than at the scale pgp ~ pup ~ me .

. . . 2 2
* This translates into a dynamical scale , /p% _ +4mg
to better catch dynamics in differential distributions.

x Comparison with LHCb exp. data consistent with these observations.
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From parton production to heavy-flavour hadrons
Different descriptions of the transition are possible:

1) Convolution of cross-sections with Fragmentation Functions

2) Fixed-order QCD + Parton Shower + hadronization:

match the fixed-order calculation with a parton-shower algorithm (resum-
mation of part of the logarithms related to soft and collinear emissions
on top of the hard-scattering process), followed by hadronization (phe-
nomenological model).

Advantage: fully exclusive event generation, correlations between final
state particles/hadrons are kept.

Problem: accuracy not exactly known.

Both methods 1) and 2) used here.

In both cases, additional non-perturbative contribution due to intrinsic
(kT), related to the confinement of the initial state partons into hadrons,
is added.
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Do + D, production: theory predictions vs. LHCb

experimental data
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* pr distributions in different rapidity bins are considered.

* Experimental data have uncertainty bands much smaller than theory predictions.

« Similarly good agreement theory/experiment in low pr bins at all LHCb rapidities.
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D, + D, production: theory predictions vs.

experimental data

LHCb
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* p7 distributions in different rapidity bins are considered.
* Experimental data have uncertainty bands much smaller than theory predictions.
* Less precise exp. data. D, data at low p7 are missing!
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And if we try to fit the LHCb experimental data ?
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+ Dangerous operation: the experimental data may be wrong!

* The “best fit" configuration turns out to correspond to other scales (less justified from the
theory point of view) + intrinsic (k) > 1 GeV.

+ This shows that there are other QCD effects that can be approximately reabsorbed in a
change of scale an into an (intrinsic) (k1) smearing model, which play a role in this process.

* Part of these effects are expected to be of perturbative origin and another part of
non-perturbative origin.
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Charm production at large rapidity /pseudorapidity
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* For forward charm production (7. = 6)
rapidity and pseudorapidity distributions increasingly differ.

x 1), distribution effectively limited by the fact that y. distribution is

bounded.
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Scatter-plots in (7, E) for heavy-flavour v and v

production

E (GeV)
E (GeV)

PYTHIA in [arXiv:2004.07821] vs. NLO QCD + PYTHIA

x More energetic neutrinos at higher rapidities.
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Scatter-plots in (E, 1) for v; and 7, production
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DPMJET /FLUKA in [arXiv:2004.07821] vs. NLO QCD + PYTHIA

x Can we distinguish v from direct Ds — 1, decay from those from
chain Dg — 7 — v, decay ?
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Energy distribution of forward v, + 7,
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from W. Bai et al. [arXiv:2002.03012]
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x direct decay and chain decay contribute to the total
in different energy regions

* contributions from B meson decays are one-two order of magnitude
smaller than those from D mesons.

+ What are the dominant uncertainties on these distributions ?
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Geometry for forward neutrino detection considered
in our work

* A 35.6 ton Pb detector of R = 1.0 m and length / =1 mat D =480 m
from the pp interaction point, corresponding to 7 > 6.87.

* LHC integrated luminosity £ = 3000 fb—!

* The point of production of tau neutrinos and taus from D7 has distance
d = ~crp, ~ Ep,/mp, - 150 um ~ 1.5 - 15 cm for Ep, = 200 GeV - 2 TeV.

* Similarly for tau neutrinos from B*,
d = ycrgst ~ Egt/mpg+ - 496 um ~ 1.9 - 19 cm for Ep, = 200 GeV - 2 TeV.

* And for neutrinos from 7 decay,
d =~crr = E-/m; - 87.11 um ~ 0.98 - 9.8 cm.
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Total number of CC (v, + ;) events

Vr ‘ Ur ‘ Vr + Uy vy + Uy
(R, 1E) (1, 1) mr (1, 1) mr (05,1) mr [ (1, 05) mr
(kT) 0.7 GeV 0GeV | 1.4 GeV | 2.2 GeV 0.7 GeV
D, 1591 [ 774 | 2365 2455 2143 1822 7834 1179
B0 87 | 42 129 131 124 115 202 91
Total 1678 | 816 | 2494 2586 2267 1937 8036 1870

Table : The charged-current event numbers for tau neutrinos and antineutrinos in 1 m length of the lead
detector (equivalent to Mpy, ~ 35.6 ton) assuming central scales (pg, /1) = (1.0,1.0) m7 in the computation
of heavy-meson production in pp collisions at /s = 14 TeV and an integrated luminosity £ = 3000 fb~*.

= Estimate to be repeated with updated scale + PDF choice

M.V. Garzelli et al.
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Energy distribution of CC (v, + ;) events
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* The huge uncertainty band is due to (ug, pF) scale uncertainties.

* It means that higher-order pQCD contributions are probably large.

* In case of bottom production, scale uncertainty is smaller (+60%, -30%) than for charm

(+250%, -30%) in relation to the fact that mp > mc = as(ur = mp) < as(ur = me

= Estimate to be repeated with updated scale + PDF choice

M.V. Garzelli et al. May 28th, 2020

).

19 /22



Other physics opportunities with v, (complications
for HNL searches): v oscillations
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from W. Bai et al. [arXiv:2002.03012]

x For the baseline and the neutrino energy range of the Forward Physics
Facility, oscillations between active neutrinos in the SM are suppressed.

« Oscillation of v in heavy sterile neutrinos (ms ~ 20 eV) can be probed,
by looking at deficit or excess in the observed event spectrum.
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Conclusions

* The present QCD uncertainties on the (v, + 7,) flux are large.

* An experimental would be interesting not
only for the study of neutrino oscillation effects, but even

relevant to charm and bottom production and
decay at hadron colliders.

x In particular we need a better understanding of the

The charm mass is large
enough with respect to Agcp to allow the application of pQCD methods
down to pr — 0. However, in this regime non perturbative QCD effects
also play a relevant role, that needs to be better quantified.

*x Understanding this point, on the other hand, may have effects on
, which, in
turn, are ingredients of even other calculations.

*x The is the 7 probed by an experiment, the is our
present theoretical
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