# Liquid argon and other detection techniques (and requirements)

### Sources:

- FASER, FASER-nu proposals.
- Event rates from Felix Kling and from 2002.03012 (our work)
- Light DM detection far forward...2101.10338
- Liquid argon facility considerations Resnati (may 2021)
- **Civil Engineering study March 1-4, 2021 (John Osborne via Jamie Boyd)**
- microboone/protodune TDRs
- First LHC neutrino events ! 2105.06197

Milind Diwan Brookhaven National Lab. 5/24/2021

An attempt to consider what is necessary/sufficient for a physics program.

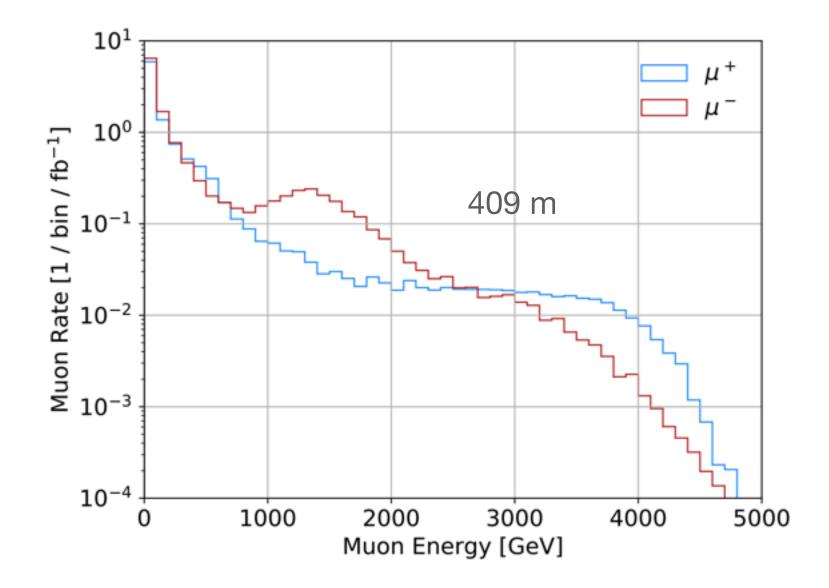


# **Basic beam/source parameters for HL-LHC**

| Parameter              | Value                                      | Comment                                                                     |  |
|------------------------|--------------------------------------------|-----------------------------------------------------------------------------|--|
| p-p Collision energy   | 14 TeV                                     |                                                                             |  |
| Crossing frequency     | 40 MHz                                     |                                                                             |  |
| Bunch spacing          | 25 ns                                      | Use to reject non beam backgrounds                                          |  |
| Bunch length           | 90 mm                                      |                                                                             |  |
| Half Crossing angle    | 250 micro-rad                              | Will move the axis (sideways?) by 15 cm at 612 m                            |  |
| Crab crossing          | yes                                        | Will spread collisions over larger length                                   |  |
| Peak Luminosity        | 5 x 10 <sup>34</sup> /cm <sup>2/</sup> sec | Could go higher by 50%.                                                     |  |
| Total/inelastic X-sec  | 111/85 mbarn                               |                                                                             |  |
| peak N events/crossing | 135                                        | Spread out over ~9 cm and 300 ps                                            |  |
| Total integrated Lumi  | 3000 /fb                                   | 10 times more than run II                                                   |  |
| Per year Lumi          | 350 /fb                                    | This could be important for physics output                                  |  |
| Start of operations    | Year 2027                                  | Reviews, Underground construction, and detector installation must complete. |  |
| Years of operation     | 10 years                                   | Is it possible to change or upgrade detectors during thistime_?             |  |
| p-Pb (NN Luminosity)   | >100 /pb @ ecm(NN) ~ 8 TeV                 | This is in a short run. orders of magnitude less than p-p.                  |  |



### Scientific goals for the FPF These may have to turn into priorities, otherwise decisions could become difficult. These are no exclusive goals, but they serve to define the detector capabilities.


- Goals for neutrino physics (focus on these for the rest of this talk)
  - Measure the flux of tau neutrinos.
  - energy spectrum and distance.

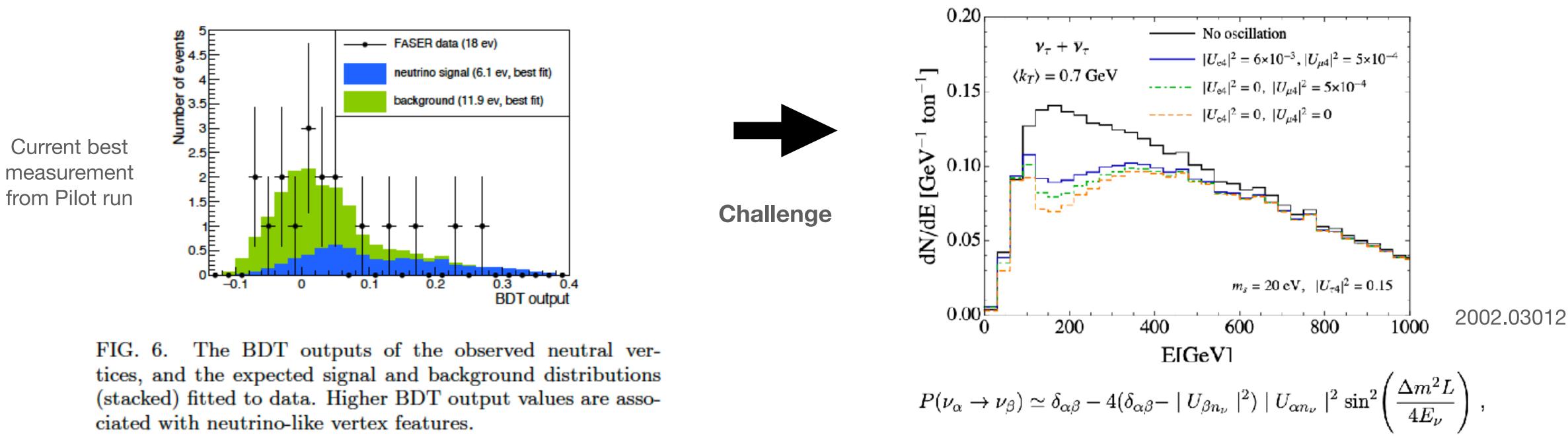
  - QCD physics with far forward neutrinos.
- Goals for dark sector physics.
  - Detection of dark sector photon decays in the detector volume
  - Detection of light dark matter scattering in detector
  - Search for milli-charged dark matter particles.

Limit the oscillations of tau neutrinos into other neutrinos over the parameter range defined by the

• Determine the cross section of neutrino interactions in the energy range of hundreds of GeV to few TeV.

## **Experimental conditions** Approximate fluxes, rates of backgrounds




- This rate will be lower at 612 m.
- Both charged and neutral hadron interactions present significant background.
- Total neutrino interaction rate normalized to per ton per fb<sup>-1</sup>
- Observed nu rate: ~45/ton/fb<sup>-1</sup> at 480 m

| 612 m                                                                  |  |
|------------------------------------------------------------------------|--|
| 3000/fb;5x10 <sup>34</sup> /cm2/sec                                    |  |
| >6.4, (~5.4-6.0 for off-axis)                                          |  |
| 1.5/0.93 (0.94/0.39) 10 <sup>4</sup> /cm <sup>2</sup> /fb <sup>-</sup> |  |
| 1.7x 10 <sup>4</sup> /cm <sup>2</sup> /fb <sup>-1</sup>                |  |
| 0.85/cm <sup>2</sup> /sec (2x10 <sup>-8</sup> /cm2/crossir             |  |
| ~3 /cm²/fb <sup>-1</sup>                                               |  |
| ~50/ton/fb <sup>-1</sup>                                               |  |
|                                                                        |  |

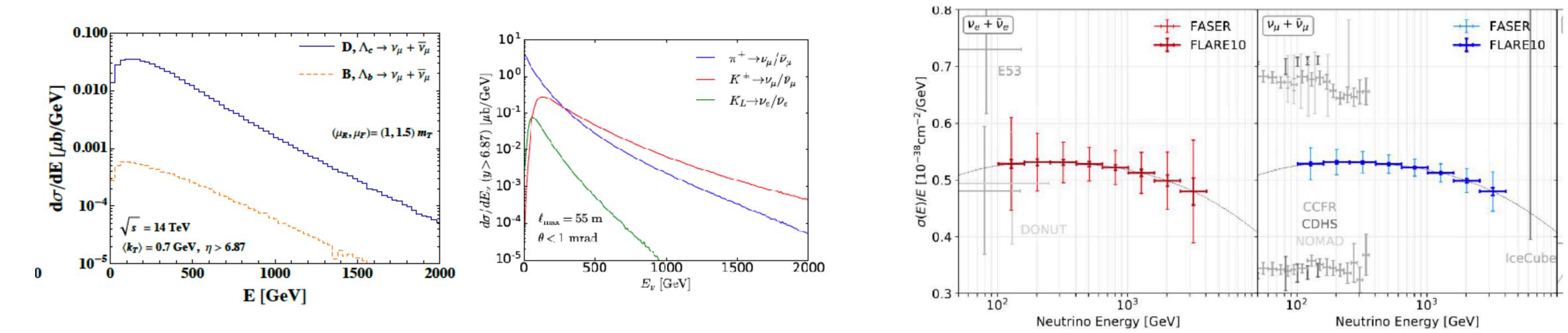
#### 2105.06197



# Tau neutrino flux and oscillations measurement



- (FASER-nu) experiment with muon identification will be the tool.
- distances (600m) and large energy > 100 GeV. Current constraints (Icecube) suggest that  $|U_{\tau 4}|^2 < 0.15$  is possible.
- are improving.
- However, to perform this measurement we need to measure the tau neutrino energy with ~20% resolution.


• To obtain precise information on tau neutrino flux and cross section, low background measure of nu-taus is needed. Emulsion

• Given the poor absolute normalization of the tau neutrino flux, a distortion in the energy spectrum is the best signal for oscillations.

• Oscillations: Sensitivity to sterile neutrinos with mass ~ 10 eV through  $\nu_{\tau}$  disappearance. Essentially a two neutrino scenario at short

• With current constraints,  $\nu_{\mu} \rightarrow \nu_{\tau}, \nu_{e} \rightarrow \nu_{\tau}$  (through the sterile channel) could partially fill in the distortion. Constraints on  $|U_{e4}|^2$ 

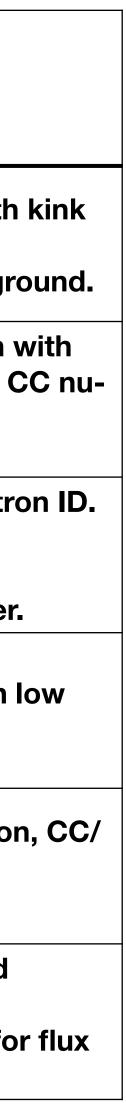
# **Neutrino cross section measurements**



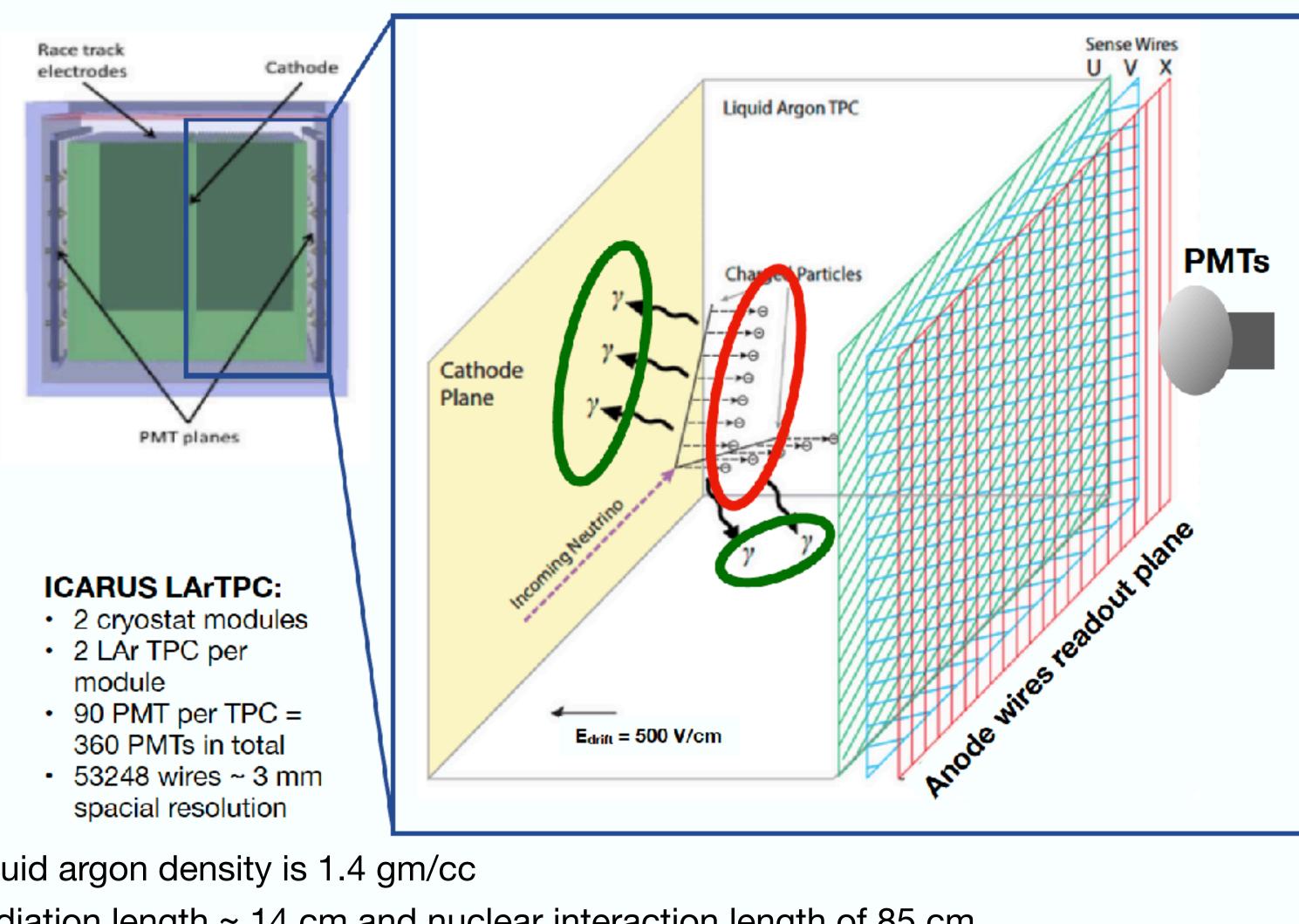
Uncertainties on this are very large.

- large uncertainties. These could improve with more data, studies...
- lacksquareDecay might be crucial (but rate is low).
- Need e/mu identification needed for electron neutrino cross section and studies of charm hadron yields (with cut on lacksquareE>500GeV)
- Need charge identification for muons. Magnetic spectrometer is needed.
- Dense calorimeter for CC/NC identification for muon events.

• Muon and electron neutrinos have two components: from heavy meson decays and pi, k decays (larger); both of these have

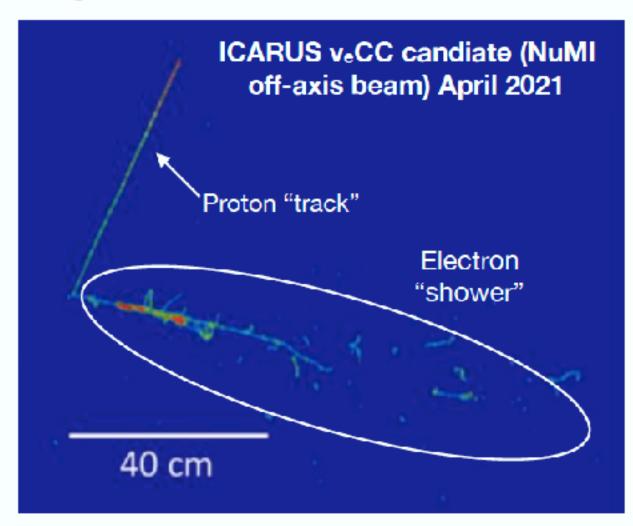

In-situ normalization for the flux using exclusive measurement with CCQE or Low-nu method could be useful. Inverse Muon

Is it possible to tag mu/e neutrino events with collisions that may have a heavy flavor? Extremely good Timing will be needed along with integration with collider data. This may improve the precision on the measurement at the cost of statistics.


#### **Detector capabilities needed for neutrino physics** Neutrino event rates are somewhat on the low side for various predictions. Ref: F.Kling

| Physics                                                         | Signature                                                           | Signal rate/3000/fb into a 1x1x7 m detector at 620 m.     | Detector mass needed for physics                                   | Capabilities                                                                                        |
|-----------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Measure nu-tau flux                                             | Decay signature of tau.<br>Kink over few mm                         | 200/ton                                                   | 10 tons.                                                           | Vertex reconstruction with detection.<br>Muon ID to reduce backgro                                  |
| nu-tau oscillations                                             | Distortion in energy spectrum of total energy.                      | 200/ton                                                   | ~100 tons if using kinematic reconstruction with exclusive decays. | Kinematic reconstruction w<br>tracking and calorimetry. C<br>tau interaction energy<br>measurement. |
| nu_mu/nu_e cross section                                        | Long muon track or high density EM shower.                          | numu: 25k/ton (mainly from<br>Pi decays)<br>nue: 5k/ton   | 10 tons                                                            | Excellent muon and electro<br>Calorimetry for energy<br>measurement<br>Include hadronic absorber.   |
| Charm production                                                | Electron neutrinos > 500<br>GeV                                     | nue: 5k/ton                                               | 10 tons                                                            | Excellent electron ID with le background.                                                           |
| Electro-weak<br>measurements                                    | $ u_{\mu}  \bar{\nu}_{\mu} DES  CC/NC$                              | 20k/ton, 6k/ton for CCnu<br>and CCbarnu<br>13k/ton for NC | 100-1000 tons                                                      | Muon Charge identification<br>NC separation.<br>Hadronic calorimeter.                               |
| neutrino electron elastic<br>scattering. Inverse muon<br>decay. | Extremely forward electro-<br>magnetic shower.<br>Very forward Muon | 6/ton (inclusive)<br>20/ton (IMD)                         | 100 tons                                                           | Excellent electron ID, and<br>kinematic resolution.<br>IMD might be important for<br>normalization. |

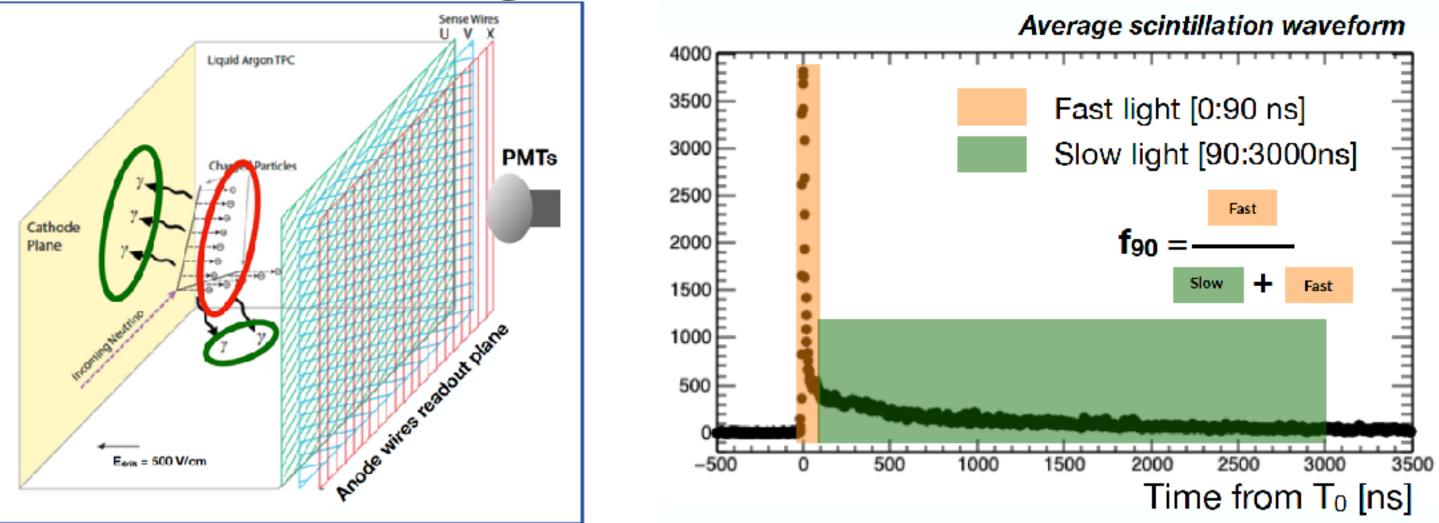





# Liquid argon scientific capabilities



- Liquid argon density is 1.4 gm/cc
- Radiation length ~ 14 cm and nuclear interaction length of 85 cm.
- Excellent muon/gamma/ electron identification.
- Good choice for neutrino cross section measurement, higher mass is needed for nu+e elastic scattering.


Charge from Ar ionization drift (time ~1m/mm) to the anode wire readout. Image of the event interaction is created



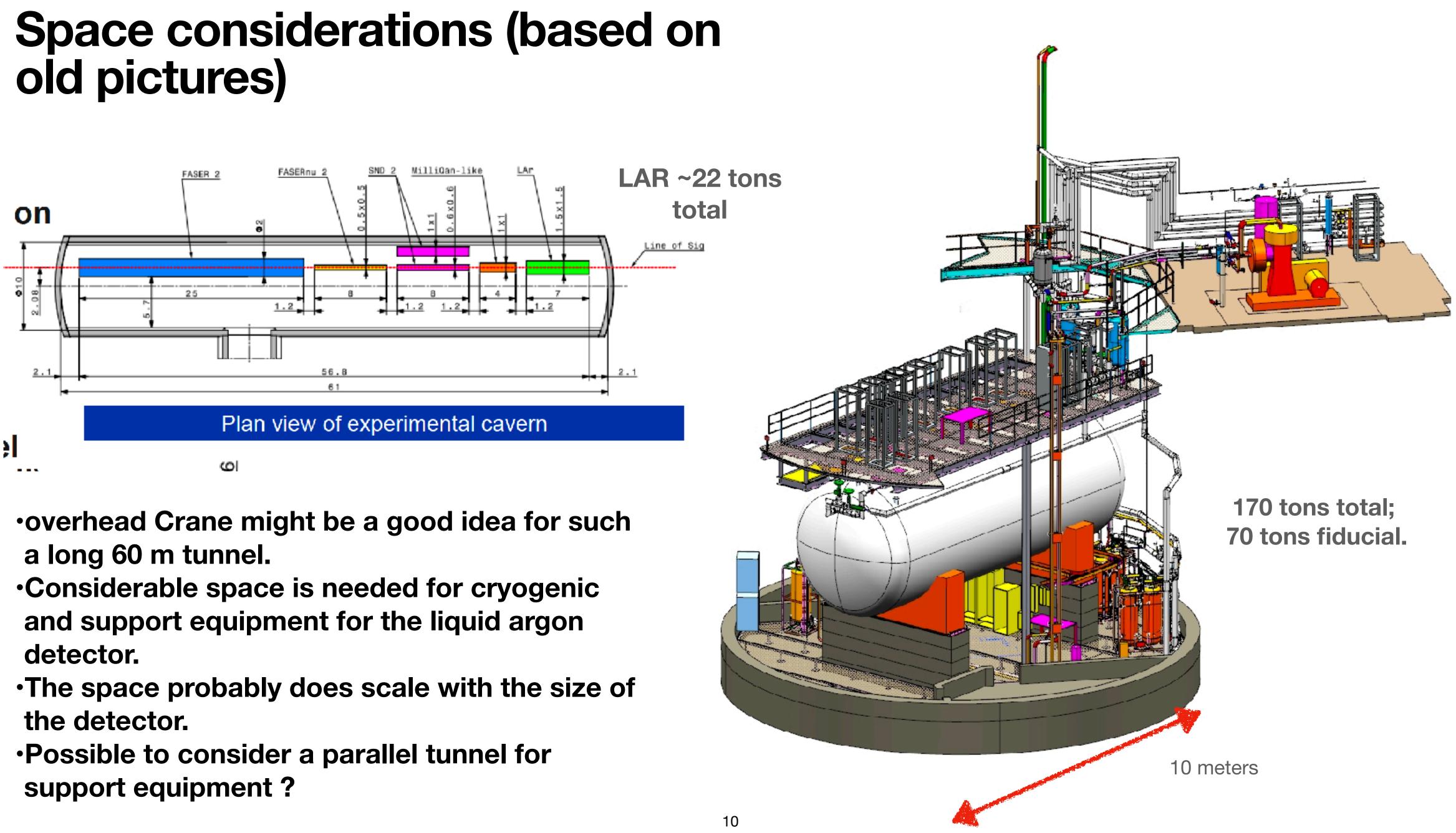
#### Scintillation light from de-excitations of Argon dymers

- Singlet state : fast light component (~6ns)
- Triplet state: **slow light** component ٠ ~1.6 µs)
- Light yield ~20k photons /MeV @500 V/cm drift )
- Wavelength: 125 nm

# Liquid argon technical issues



- 20000 bunch crossings.
- These must be separated from neutrino events.
- To reduce geometry related ambiguity, pixel readout is needed.
- A high density photon readout is needed to measure the time of the events to isolate events related to bunch crossings.
- Possible Analysis path: isolated events for each crossing -> reject those entering the detector -> match the pattern to TPC pixel readout.


Given the slowness of the drift, we need to consider the scintillation as the primary readout to isolate events from bunch crossings.

• Liquid argon time projection chamber will have drift time of ~0.5 msec if drift length is 0.75 m. During this time there will be

• For a liquid argon detector with cross section of  $\sim 2 \text{ m}^2$  there will be < 8.5 tracks through the detector and  $\sim 10^{-3}$  neutral hadrons.

• For extremely forward events, the wire readout cannot be used because of isochronous events (all wires get hit at the same time).





# Conclusion

- An integrated approach to the detectors in the FPF will yield the best science.
- new physics).
- The physics interest as presently seen is (in increasing difficulty)
  - tau neutrino flux and associated heavy flavor physics,
  - neutrino cross sections in the 1TeV range,
  - tau neutrino oscillations, and
  - perhaps electroweak measurements.
- A preliminary table of needed detector capabilities shows that the needs are quite different for these measurements.
- Liquid argon has excellent EM-shower and muon ID and could be a good candidate for some of these measurements.
- detectors at FNAL. However it is beam related, and therefore timing cannot be used to reject it.
- events for each bunch crossing and contained in the detector.

### Presented a very preliminary survey of scientific requirements and detector capabilities that are needed.

• Focus was on neutrino physics (mainly because it is a well known target of opportunity and it also represents a background to any

• For a liquid argon TPC, the rate of muon background is comparable to the cosmic ray backgrounds in present short baseline

• Given the geometry (extremely forward), a pixel readout and high density scintillation measurement is needed to isolate neutrino

# **Event rate table**

# Simulation uncertainties add to the variation.

| calculation              | faser-pilot | faser-nu    | Faser-nu<br>proposal | flare-10    | From JB |
|--------------------------|-------------|-------------|----------------------|-------------|---------|
| Normalization<br>mass*fb | ton*fb      | 1 ton*fb    | 1 ton*fb             | 1ton*fb     | 1ton*fb |
| angular range            | ~10cm/480m  | 25 cm/480m  | 25 cm/480            | 1 m / 620 m |         |
| numu/anti-<br>numu       | 23.0/6.0    | 22/5.9      | 114                  | 7/2.1       | 43      |
| nue/anue                 | 3.7/2.1     | 3.42/1.97   | 7.22                 | 1.1/0.53    | 10      |
| nutau/anutau             | 0.063/0.034 | 0.078/0.034 | 0.12                 | 0.049/0.019 | 0.13    |

**Observed total: 45/ton/fb** 

Rate depends on the angular acceptance as well as mass. This creates some peculiarities.