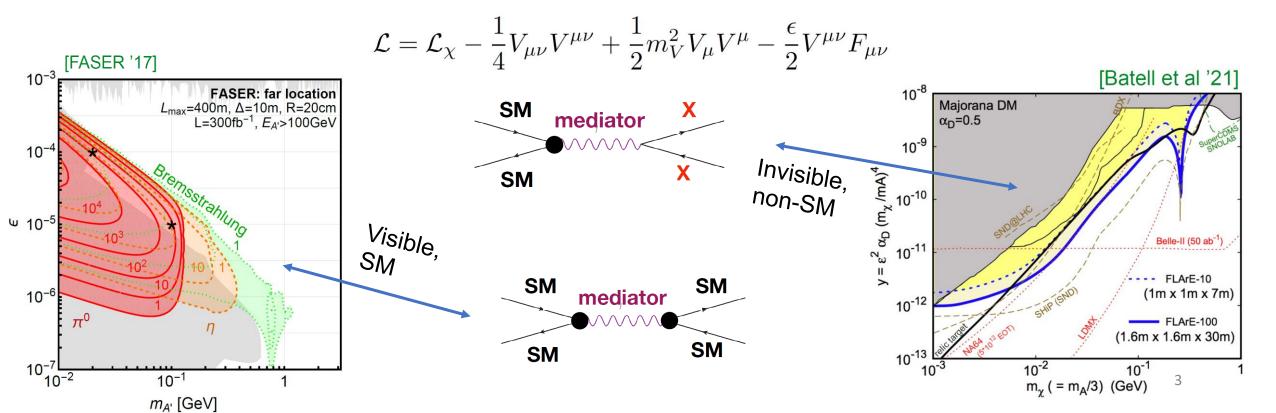
Dark Sectors via Proton Bremsstrahlung

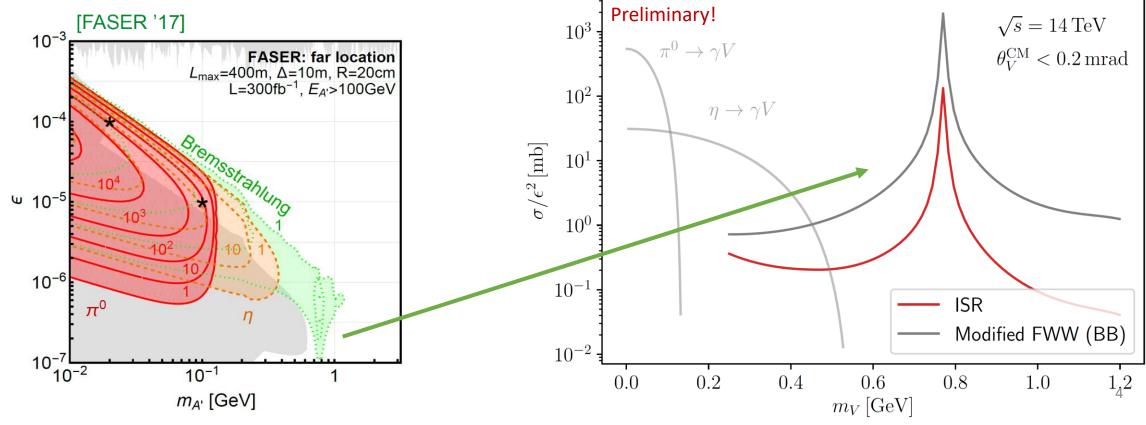
Saeid Foroughi-Abari

University of Victoria


2nd Forward Physics Facility Meeting - May 28, 2021

- Motivation: Sub-GeV Dark Sector
- The methods of approximation in evaluating p/e bremsstrahlung
- Modeling forward pp scattering at HE
- Pomeron exchange and proton diffractive dissociation
- Compare the resulting rates with modified WW approximation

Dark Sector Motivation


- Light (sub-GeV) states from a Dark Sector interacting with matter through a light mediator are viable DM candidates.
 [Batell, Pospelov, Ritz '09]
- A minimal extension to the SM: kinetically mixed Dark Photon [Okun; Holdom; Foot et al]

Revisiting Bremsstrahlung production of A'

- Dark photon production in the forward region modeled via bremsstrahlung
- Regime near ρ/ω resonance needs a more careful treatment

[SF & A. Ritz]

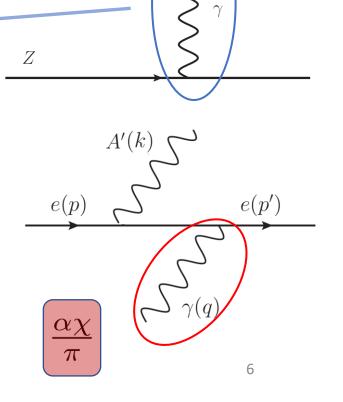
Photon vs Fermion Pole Approx.

Photon Pole Approx.

Equiv. Photon Approx. (FWV in QED	to Lepton and W Kwang Je K Stanford Linear Accelerator Center, (Received A Weizsäcker-Williams method is derived whi	Improved Weizsäcker-Williams Method and Its Application to Lepton and W-Boson Pair Production* Kwang Je Kim and Yung-Su Tsai Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Received 30 April 1973) Weizsäcker-Williams method is derived which handles the elastic and inelastic target form factors		0. IDITALEEL		Splitting Functions Using OFPT	
	property. The method is applied to calculate er	ly. The method is applied to calculate energy-angle distributions of photoproduced lepton pairs:		Institut des Hautes Etudes Scientifiques Rures-sur-Yvette France QUASI-REAL ELECTRON MET		HOD	
	New Fixed-Target Experiments to Search for Dark Gauge Forces		Received 12 April	IN HIGH ENERGY QUANTUM ELECTRODYNAMICS			
Electron brem. in e-beam dum	James D. Biorken ¹ Bouven Essig ¹ Philip Schuster ¹ and Natalia Toro ²		V.N. BAIER and V.S. FADIN Institute of Nuclear Physics, Novosibirsk, 630090 V.A. KHOZE Institute of Nuclear Physics, Leningrad. Received 6 July 1973		0090		
	Fixed-target experiments are ideally suited for discovering new MeV–GeV mass $U(1)$ gauge bosons through their kinetic mixing with the photon. In this paper, we identify the production and decay		Abstract: An electron pole approximation is presented, which can be u sections in high energy quantum electrodynamics. A general derivat				
	through then knetic mixing with th	e photon. In this paper, we identify the produ-	ction and decay	Phene	omenology of GeV-scale scalar portal		
Dark Photons	New exclusion limits on dark gauge forces from proton						
via proton	Bremsstrahlung in beam-dump data		Iryna Boiarska, ¹ Kyrylo Bondarenko, ² Alexey Boyarsky, ² Volodymyr Gorkavenko, ³ Maksym Ovchynnikov, ² Anastasia Sokolenko ⁴		Scalars via	a	
Brem.	Johannes Blümlein ^a , *, Jürgen Brunner ^b ^a Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen, Germany ^b CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France			¹ Discovery Center, Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, 2100, Copenhagen, Denmark ABSTRACT: We review and revise the phenomenology of the scalar portal – a m		proton Bre	em.
	ARTICLE INFO Article history: Received 15 November 2013 Reseived in protect for 0. Schwart 2014	A B S T R A C T We re-analyze published proton beam dump dat with the v-calorimeter I experiment in 1989 to	set n	particular, and show t	icle with the mass in GeV range that mixes with the Higgs boson we consider production channels $B \to SK_1(1270)$ and $B \to SK_0^*$ hat their contribution is significant. We extend the previous analys the production of scalars from decays of mesons, of the Higgs boson	(700) sis by	
	Received in revised form 9 February 2014 corresponding data have been used for axion and light b			uction via proton bremsstrahlung, deep inelastic scattering and coh	J		

Fermion Pole Approx.

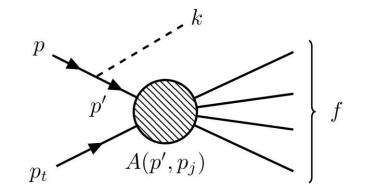
FWW (Photon Pole) Approx. (QED)


• Assumptions:

- Rapidly moving fermion & radiation is highly collinear
- Small photon virtuality [Kim, Tsai '73][Bjorken et al '09']

$$t_{min} = -q_{min}^2 \approx \left(\frac{U}{2E_0(1-x)}\right)^2 \quad \checkmark \quad U(p_T, x) \equiv \frac{\left[p_T^2 + x^2 m_e^2 + (1-x)m_{A'}^2\right]}{x}$$

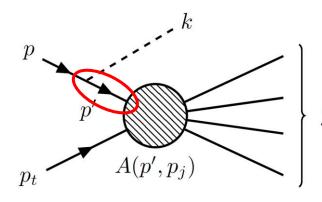
- Interaction dominated by transverse polarizations
- Cloud of effective flux of photons


$$d\sigma^{2\to3} \bigg|_{\rm WW} = (\alpha^3 \epsilon^2 \chi) \, \frac{E_e^2}{E_k^2} \, \frac{1}{U^2} \, A_{t=t_{min}}^{22} \, dx dp_T^2$$

 e^{-}

Splitting (Fermion Pole) Approx.

- Assumptions:
- Ultrarealistic fermion & radiation is highly collinear
- Intermediate-fermion being near on-shell


$$\mathcal{M}_{r}^{pp_{t}\to Df}(p,k,p_{j}) = ig_{D}A(p',p_{j})\frac{i(\not p - \not k + m)}{(p-k)^{2} - m^{2}}u^{r}(p)$$

Splitting (Fermion Pole) Approx.

- Assumptions:
- Ultrarealistic fermion & radiation is highly collinear
- Intermediate-fermion being near on-shell [Khoze, Fadin]

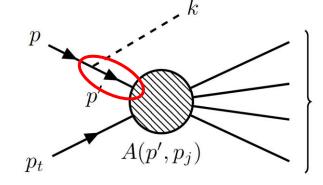
$$\frac{i(\not p - \not k + m)}{(p-k)^2 - m^2} = \frac{i}{2E_{p'}} \sum_{r'} \left[\frac{u^{r'}(p-k)\bar{u}^{r'}(p-k)}{E_p - E_k - E_{p'}} + \frac{v^{r'}(-p-k)\bar{v}^{r'}(-p-k)}{E_p - E_k + E_{p'}} \right]$$

- Other momentum transfers in $A(p, p_j)$ are large $(p-k)^2 - m_p^2 \ll (t_0)_{char} \Rightarrow \frac{H}{r} \ll (t_0)_{char}$

$$\Rightarrow \quad \frac{H}{4z(1-z)^2 p_p^2} \ll 1$$

Splitting (Fermion Pole) Approx.

- Assumptions:
- Ultrarealistic fermion & radiation is highly collinear
- Intermediate-fermion being near on-shell [Khoze, Fadin]

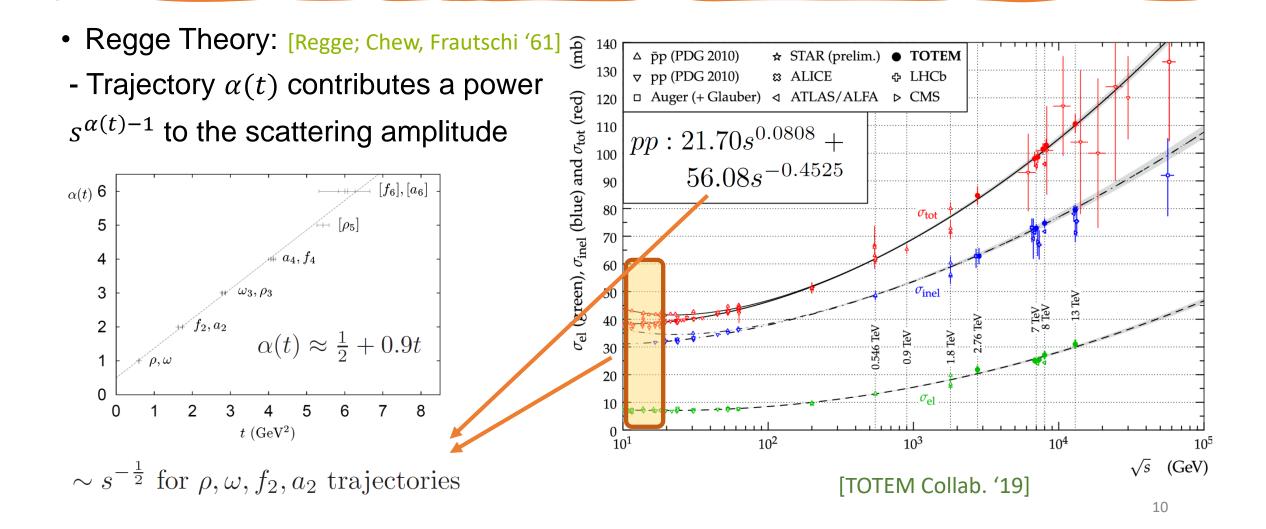

$$\frac{i(\not p - \not k + m)}{(p-k)^2 - m^2} = \frac{i}{2E_{p'}} \sum_{r'} \left[\frac{u^{r'}(p-k)\bar{u}^{r'}(p-k)}{E_p - E_k - E_{p'}} + \frac{v^{r'}(-p-k)\bar{v}^{r'}(-p-k)}{E_p - E_k + E_{p'}} \right]$$

- Other momentum transfers in $A(p, p_j)$ are large
- Splitting Probability: [Altarelli, Parisi] [Boiarska '19]

Calculable sub-process

 $dP_{p \to p'D} \equiv w(z, p_T^2) dz dp_T^2$

 $d\sigma_{pp_t \to DX} \approx dP_{p \to p'D} \times \sigma_{pp_t}(s')$



$$\Rightarrow \quad \frac{H}{4z(1-z)^2 p_p^2} \ll 1$$

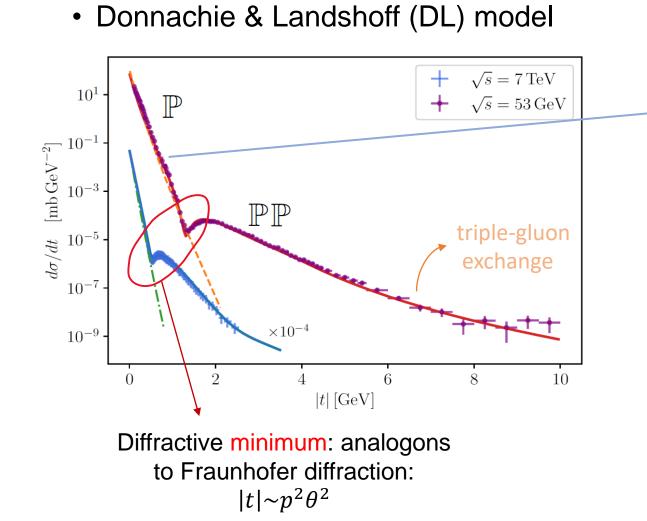
$$\frac{1}{1-m^2} \gg \frac{1}{(t_0)_{\text{char.}}} \quad \Rightarrow \quad \frac{H}{z} \ll (t_0)_{\text{char}}$$

s in
$$A(p, p_j)$$
 are large

Modeling forward pp scattering

Modeling forward pp scattering

• Pomeron Trajectory: [Gribov '62] (qm) 140△ p̄p (PDG 2010) ★ STAR (prelim.) ● **TOTEM** 130 ▼ pp (PDG 2010) a ALICE ⇔ LHCb \Box Auger (+ Glauber) \triangleleft ATLAS/ALFA \triangleright CMS (green), σ_{inel} (blue) and σ_{tot} (red) 120 110 - Reggeons are not enough! $pp: 21.70s^{0.0808} +$ 100 $56.08s^{-0.4525}$ Need to include exchange of 90 80 $\sigma_{\rm tot}$ another object with trajectory 70 60 $\sigma_{\rm inel}$ 50 7 TeV 8 TeV 40 0.546 TeV TeV $\alpha_{\mathbb{P}}(t) \approx 1.08 + 0.25t$ $\sigma_{\rm ej}$ 30 20 10 0 10^{2} 10^{3} 10^{4} 10^{1}


[TOTEM Collab. '19]

 \sqrt{s}

 10^{5}

(GeV)

Elastic Scattering via Pomeron Exchange

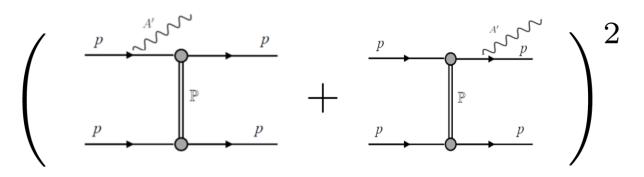
[D&L '82, '84, '11, '13]

$$\frac{d\sigma^{\rm el}}{dt} \simeq \frac{1}{4\pi} (Y_{\mathbb{P}}F_1(t))^4 |G(s,t)|^2$$

Effective Propagator & Vertex for SPE:

$$G_{\mathbb{P}}(s,t) = (s\alpha'_{\mathbb{P}})^{\alpha_{\mathbb{P}}(t)-1}, \quad \Gamma^{\mu}(t) = Y_{\mathbb{P}}F_{1}(t)\gamma^{\mu}$$

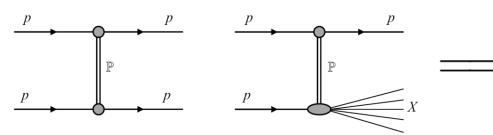
$$\alpha_{I\!\!P}(t) = \epsilon_{I\!\!P} + \alpha'_{I\!\!P} t$$

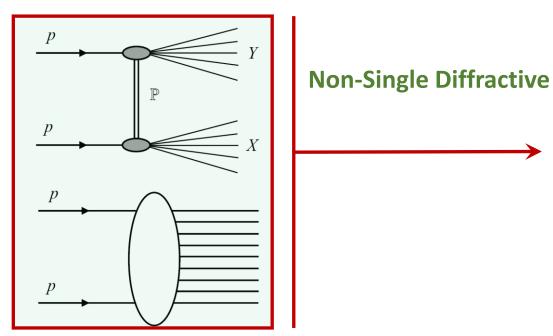

Quasi-Elastic Radiation

$$d\sigma_{pp\to\gamma'pp} \approx dP_{p\to p'\gamma'} \times \sigma_{pp}^{\rm el}(s')$$

 Observe the large cancellation between ISR & FSR

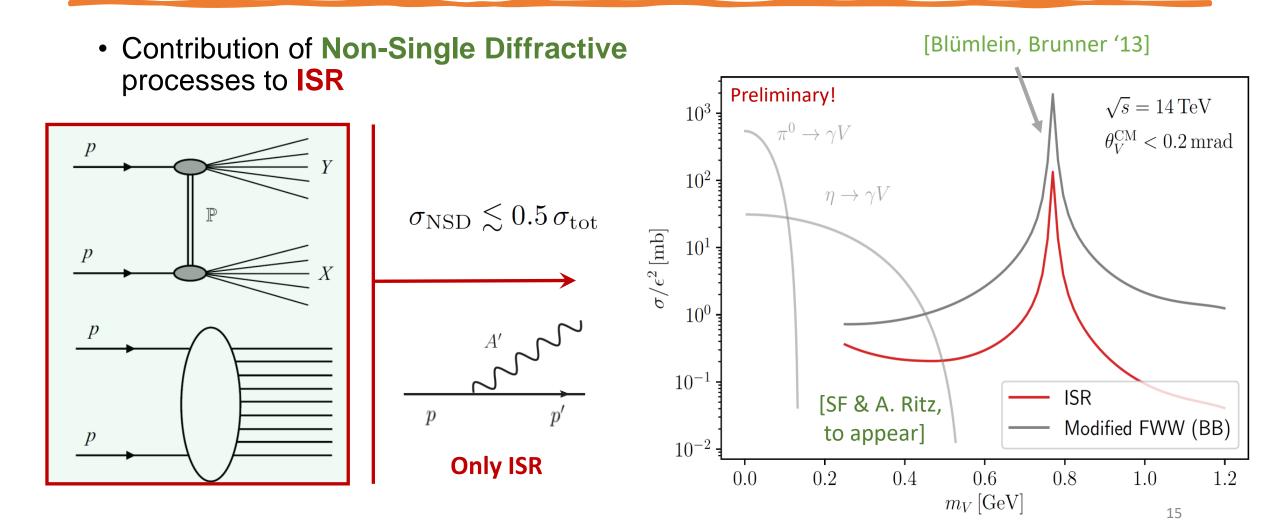
(But that is not the end of the story!)


Elastic pp Brem. (Vector), $\sqrt{s} = 30$ [GeV] 10^{-1} (Probability) (Probability) 10^{-3} [SF & A. Ritz, to appear] P split P split P split $m_{A'} = 500 \text{ MeV}$ $\theta_{\Delta'} = 0.5^{\circ}$ Pomeron-Exchange ISR Pomeron-Exchange Full **OFPT ISR** 10^{-9} W.W. Approximation **B.B.** Prescription 20 40 60 80 100 0 $E_{A'}[GeV]$ 13

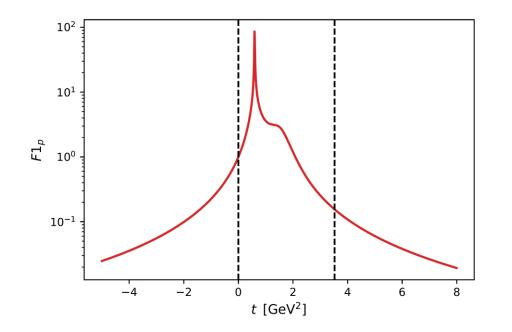

Topologies of events in σ_{tot}

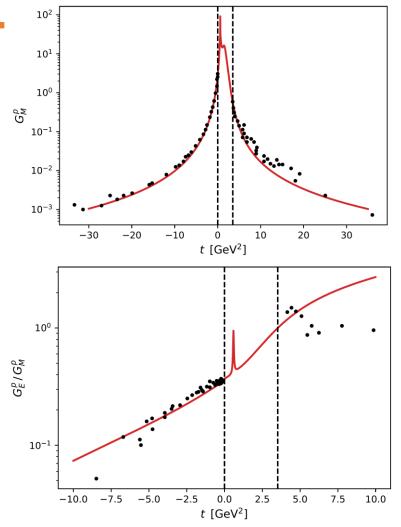
Large cancellation

between ISR & FSR


• Diffractive dissociation via Pomeron exchange

© LHC DD: 9.0% DD: 9.0% SD: 16.0% Elastic: 25.0% [PDG; Khoze et al '20]


A' production via proton beam



EM Form Factor in the TL region

[Adamuscin et al '16] [Faessler et al '09]

- The radiated A' has time-like (TL) momenta
- Inclusion of the TL form-factor accounting for the mixing with ρ/ω resonance based on VMD model

Summary

- The well known FWW method approximate the boson pole which relate the ultrarelativistic fermion interaction to the cross-section for real-boson scattering.
- *Initial (final) state radiation* can be evaluated using an alternative method of splitting function in the context of OFPT which approximates the intermediate fermion propagator.
- Soft hadronic interactions are non perturbative and are described by the *Regge approach* at high energies.
- Proton bremsstrahlung from *elastic* and *single diffraction* topologies leads to large <u>cancelation</u> between ISR & FSR.
- Dark photon via proton brem. is revisited near the ρ/ω resonance region.
- Millicharged particle production at the LHC forward region can also be studied using the splitting approach.