CROUCHING TIGER HIDDEN DRAGON

FPF2 Meeting 28 May 2021

CRUNCHING DILATON HIDDEN NATURALNESS

(a new approach to the hierarchy problem)

PRL **126**, 091801 (2021) [arXiv:2007.14396] in collaboration with C. Csáki, R. T. D'Agnolo, and M. Geller FPF2 Meeting

28 May 2021

Snowmass 2021 LOI

searching for LLPs with masses in the MeV to several GeV range. At the HL-LHC, all mesons will be produced in large numbers, and their decays can produce a large flux of energetic forward-going LLPs. The discovery potential for LLPs at the FPF is well-documented. Building on the FASER experiment, currently under construction for Run 3, an upgraded FASER 2 detector is currently planned for the HL-LHC [20]. With a radius of 1 m and a length of 5 m, FASER 2 is too big for the existing tunnel, but could be easily accommodated in the FPF. Such a detector has the potential to discover dark photons and other light gauge bosons [10, 21–26], dark Higgs | ... |

[44] C. Csáki, R. T. D'Agnolo, M. Geller, and A. Ismail, "Crunching Dilaton, Hidden Naturalness," arXiv:2007.14396 [hep-ph].

The hierarchy problem

Sensitivity of m_H^2 to the scale of new physics

Symmetry-based approaches typically predict new particles at the TeV scale

Cosmological dynamics can select a small Higgs VEV (relaxion, *N*naturalness, etc.)

See also: anthropic solutions

Our approach

Landscape of m_H^2 values up to a cutoff Λ :

$$V_H(H) = -m_{H,i}^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$

Patches crunch unless $h \equiv \langle H^0 \rangle$ satisfies

Our approach

Higgs couples to dilaton of a spontaneously broken CFT sector w/ large, negative vacuum energy

The CliffsNotes

 $h < h_{
m crit}
ightarrow {
m long-lived}$ metastable vacuum ightarrow standard cosmological history

 $h > h_{\rm crit} \rightarrow {\sf roll}$ down to true vacuum $\rightarrow {\sf crunch!}$

Main predictions:

- ▶ light (0.1–10 GeV) dilaton
- ► KK electroweak gauge bosons*
- ▶ no top partners

^{*}which have NOTHING to do with resolving the hierarchy problem

RS model

Standard 5D warped description of CFT with Goldberger-Wise stabilization

Dilaton χ identified with IR brane location

Higgs in bulk, all fermions on UV brane

The potential

$$V(\chi, H) = V_{\text{GW}}(\chi) + V_{H\chi}(\chi, H) + V_{H}(H)$$

Usual GW stabilization generates true vacuum:

$$V_{GW}(\chi) = -\lambda \chi^4 + \lambda_{GW} \chi^{4+\delta}$$

IR brane-localized terms generate false vacuum:

$$V_{H\chi}(\chi,H) = \lambda_2 |H|^2 \frac{\chi^{2+\alpha}}{k^{\alpha}} - \lambda_{H\epsilon} |H|^2 \frac{\chi^{2+\alpha+\epsilon}}{k^{\alpha+\epsilon}} - \lambda_4 |H|^4 \frac{\chi^{2\alpha}}{k^{2\alpha}}$$

where $\alpha=2\sqrt{4+m_b^2-2}$; term involving marginal field (e.g. GW scalar) $\sim z^\epsilon$ gives modified quadratic

The potential

Phenomenology

Reminder: no top partners!

Bulk Higgs → KK electroweak gauge bosons

No KK gluons*

(*unless we put QCD in the bulk)

Light dilaton (0.1–10 GeV) inherits SM Higgs couplings, suppressed by $\sin\theta$

Additional direct coupling to EW gauge bosons:

$$\frac{\chi}{2\chi_{\min}\log\frac{R'}{R}}(F_{\mu\nu}^2 + Z_{\mu\nu}^2 + 2W_{\mu\nu}^2)$$
Important!

Lower mass scan

Lower mass scan

Higher mass scan

The photon coupling

Summary and outlook

Higgs VEV tied to cosmological stability

Work in progress: UV completion and little hierarchy problem $(\lambda,\lambda_{GW}\sim 10^{-5})$

Opportunity to probe dilaton parameter space at the FPF!

Thank you!

for more info: arxiv.org/abs/2007.14396 ai279@cornell.edu

pages.physics.cornell.edu/~ai279/

GW potential

GW field yields potential $V_{GW}(\chi) = -\lambda \chi^4 + \lambda_{GW} \chi^{4+\delta}$ Small explicit breaking of scale invariance (δ) by GW bulk mass

$$\chi_{GW} \sim k \left(\frac{\lambda}{\lambda_{GW}}\right)^{1/\delta}$$

Brane-localized terms

Higgs field sourced on UV brane; VEV scales as $z^{2\pm\sqrt{4+m_b^2}}$

Can show UV source scales on IR brane as $H_{\rm UV}\chi^{\sqrt{4+m_b^2}-2}\equiv H_{\rm UV}\chi^{\alpha/2-1}$; $\alpha=2\sqrt{4+m_b^2}-2$

Brane-localized quadratic term $\rightarrow |H|^2 \chi^{2+\alpha}$

Brane-localized quartic term $\rightarrow |H|^4 \chi^{2\alpha}$

Allow terms including GW scalar $\sim z^{\epsilon}$ (or any other nearly marginal field) $\rightarrow |H|^2 \chi^{2+\alpha+\epsilon}$

Brane-localized terms

Putting this all together:

$$V_{H\chi}(\chi,H) = \lambda_2 |H|^2 \frac{\chi^{2+\alpha}}{k^{\alpha}} - \lambda_{H\epsilon} |H|^2 \frac{\chi^{2+\alpha+\epsilon}}{k^{\alpha+\epsilon}} - \lambda_4 |H|^4 \frac{\chi^{2\alpha}}{k^{2\alpha}}$$

For small $h < h_{\rm crit}$, $V_{H\chi}$ has a local minimum in $\chi!$

Minimum disappears for $h > h_{crit}$

Analytical estimates

Neglecting V_{GW} around metastable minimum, estimate:

$$h_{\text{crit}} = k \left(\frac{\lambda_2}{\lambda_{H\epsilon}} \frac{4 - \alpha^2}{(2 + \epsilon)^2 - \alpha^2} \right)^{\frac{1 - \alpha/2}{\epsilon}} \sqrt{\frac{\lambda_2}{\lambda_4} \frac{\epsilon(2 + \alpha)}{2\alpha(2 - \alpha + \epsilon)}}$$

$$\chi_{\text{crit}} = k \left(\frac{\lambda_2}{\lambda_{H\epsilon}} \frac{4 - \alpha^2}{(2 + \epsilon)^2 - \alpha^2} \right)^{1/\epsilon}$$

$$\chi_{\min} \simeq \left(\frac{h^2}{k^{\alpha}} \frac{2\alpha \lambda_4}{(2+\alpha)\lambda_2}\right)^{\frac{1}{2-\alpha}}$$

Large separation of scales $h_{\rm crit}, \chi_{\rm crit}, \chi_{\rm min} \ll k$ from small ϵ

Analytical estimates

Neglecting V_{GW} —is this okay?

Require V_{GW} to be dominated by $V_{H\chi}$ around χ_{crit}

$$\rightarrow \lambda \sim \lambda_{GW} \lesssim \frac{\lambda_2^2}{\lambda_4}$$

Larger λ, λ_{GW} washes out the metastable minimum

The little hierarchy

Little hierarchy: $\frac{h}{\chi_{\min}} \lesssim 0.1$

Implies $\lambda_2 \lesssim 10^{-2}$; $\lambda, \lambda_{GW} \lesssim 10^{-5}$

And a light dilaton:

Dilaton mass and mixing

$$m_\chi \simeq m_h \sqrt{rac{h}{\chi_{
m min}} rac{\pi \sin heta}{\sqrt{6} N}} - rac{8\pi^2 (\lambda - \lambda_{
m GW})}{N^2} rac{\chi^2_{
m min}}{m_h^2} \ \sin heta \sim rac{(\lambda_2 - \lambda_{H\epsilon})}{N} rac{h \chi_{
m min}}{m_t^2}$$

Parameter scans

Take $k=10^8$ TeV, $h\simeq 174=246/\sqrt{2}$ GeV

	Parameter	Scan 1 range	Scan 2 range
	λ	$1.1\lambda_{GW}$	$1.1\lambda_{GW}$
V_{GW}	$\lambda_{ extit{GW}}$	$(0.5, 1.5) \times 10^{-5}$	$2 imes10^{-6}$
	δ	0.01	0.01
	λ_2	$(0.5, 1.5) \times 10^{-2}$	$(0.5,1) imes 10^{-2}$
	$\lambda_{H\epsilon}$	$(2,4) imes \lambda_2$	$(2,4) imes \lambda_2$
$V_{H\chi}$	λ_{4}	(2,3)	(2,3)
	α	0.05	0.1
	ϵ	(0.03, 0.1)	(0.05, 0.01)
	Ν	3	8

Scan 2 probes lower masses (differences in **bold**)

Selection criteria

Randomly generate 10⁵ points, retain those that satisfy:

- lacktriangle Existence of second potential minimum at $\chi_{\min}>1$ TeV
- $h_{\rm crit} < 2$ TeV for naturalness
- ▶ Minimum of 2D potential, reproduces SM Higgs mass
- ▶ Metastable vacuum cosmologically long-lived ($S_4 \gtrsim 200$)

χ decays mainly to photons

Small Higgs VEVs

As $h \rightarrow 0$ we worry about eternal inflation

Nearly flat potential near $\chi=0$

A solution

von Harling & Servant 1711.11554

Add to potential $\lambda_{\gamma}\chi^{\gamma}\tilde{\Lambda}^{4-\gamma}$, with $\tilde{\Lambda}\ll k$

Baratella, Pomarol, Rompineve 1812.06996

Defines scale $\chi_* = \tilde{\Lambda} \lambda_{\gamma}^{\frac{1}{4-\gamma}}$

In the IR $\chi \lesssim \chi_*$:

- Explicit breaking of scale invariance dominates
- Description in terms of dilaton breaks down
- ▶ Effectively generates $\mathcal{O}(\chi_*^2)$ mass term

Bulk gauge group

Generate new term by any relevant operator with a coupling that grows in the IR

How about bulk QCD? Can show

$$\chi_* \sim \tilde{\Lambda} \sim \Lambda_{
m QCD}$$

for $\chi_{\min} \sim 1$ TeV, h=0

Dark gauge group also works!

Need highest Hubble constant in landscape $<\chi_*$ for no eternal inflation

Yields minimal Higgs VEV $h_{\rm min} \sim 0.1 \chi_*$