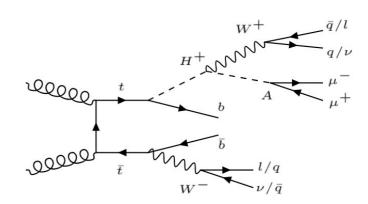
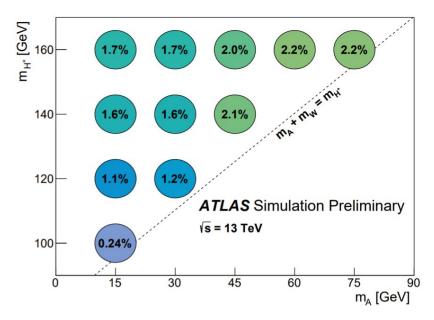
Search for H+ \rightarrow W+A with A \rightarrow $\mu\mu$



Waleed Ahmed
McGill University
on behalf of the ATLAS experiment

Charged-Higgs@LHC Online August 31st 2021

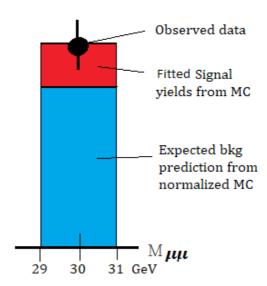
Introduction


- Search for a light charged Higgs decaying to a CP-odd scalar (A) and a W boson
- Motivation: Extension of Higgs sector can offer solutions to outstanding problem in the Standard Model
 - Light CP-odd scalar can account for the anomalous muon magnetic moment, relevant in light of recent g-2 result
 - Bosonic decays of H⁺ have been neglected in most current searches. These modes, when kinematically allowed, can dominate fermionic channels in BSM scenarios
 - ATLAS has not published on this decay in the past; the CMS result with 36 fb⁻¹ is the only public result at LHC
- Semi-leptonic decays (i.e. WW \rightarrow evjj) targeted: $e^{\pm}\mu^{+}\mu^{-}$ final states
 - Simpler combinatorics compared to $\mu\mu\mu$ mode
- Using full-Run 2 dataset, 139 fb⁻¹
- Target mass ranges as follows:
 - H+: 100–160 GeV
 - A: 15-75 GeV

Signal

- Target signature is scalar decaying to muons, we thus look for signal in opposite-sign (OS) dimuon spectrum
- Signal Selection for 'Inclusive' SR:

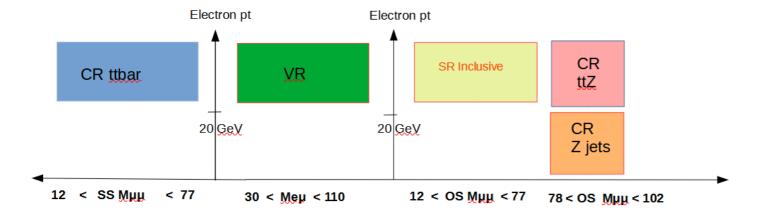
	Event s	Event selection									
Trigger	single muon di-muon										
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$p_{\rm T}^{\rm leading} > 27 \text{ GeV}, p_{\rm T}^{\rm subleading} > 5 \text{ GeV}$	$p_{\rm T}^{\rm leading} > 15 \text{ GeV}, p_{\rm T}^{\rm subleading} > 15 \text{ GeV}$									
Muons	exactly 2, opposite sign										
	$12 < m_{\mu\mu} [\text{GeV}] < 77$										
	$p_{\rm T}(\mu_2^{\rm SS})/p_{\rm T}(\mu_1^{\rm OS}) > 0.2$										
Electrons	exactly 1, $p_T > 20 \text{ GeV}$										
Jets	\geq 3, $p_{\rm T} > 20$ GeV										
	≥ 1 <i>b</i> -ta	agged jet									



Simulated mass points and corresponding signal efficiencies in the inscribed circles

Simulated 2D Mass Grid for signal samples

Design Overview


- Search strategy: split 65 GeV wide $M_{\mu\mu}$ spectrum into small windows and do counting experiments in each window
 - Single-bin likelihood fit done for each mass window i.e. cut-and-count approach
 - Window size chosen such that S/B is maximized for each mass hypothesis
- Background estimation: MC constrained with data in Control Regions
 - → Free floating parameters for major backgrounds are determined in a likelihood fit to the yields
 - → Systematic uncertainties implemented as nuisance parameters in the fit
- Statistical Package: Histfitter

Backgrounds: Control and Validation Regions

- Background distribution in SR:
 - Dominated by ttbar with one non-prompt lepton (80%), ttZ (6%), Z+jets (6%)
- CRttbar: same-sign muon region, to constrain the primary background. Enriched in muon fakes.
- CRZ and CRttZ: using the Z-peak
 in side-bands of SR to constrain Zjets & ttZ.
 CRZ is enriched in electron fakes.
- VR: designed to be signal-poor with a mixture of SS and OS dimuon events. Used to check if normalization from SS region can be used in OS region.

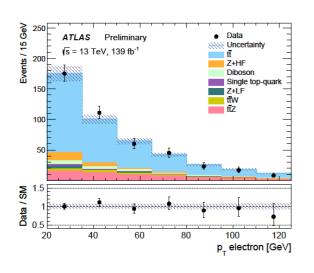
			Shared	Cuts				
muons			Exact	ly 2				
	$p_{\mathrm{T}}^{\mathrm{leading}}$	> 27 GeV,	prubleading	> 5 GeV	(single-mu trig)			
	$p_{\rm T}^{\rm leading} > 15 \text{ GeV}, p_{\rm T}^{\rm subleading} > 15 \text{ GeV} \text{ (dimuon trig)}$							
	$p_{\mathrm{T}}^{\mathrm{leading}} > 27 \text{ GeV}, p_{\mathrm{T}}^{\mathrm{subleading}} > 5 \text{ GeV (single-mu trig)}$ $p_{\mathrm{T}}^{\mathrm{leading}} > 15 \text{ GeV}, p_{\mathrm{T}}^{\mathrm{subleading}} > 15 \text{ GeV (dimuon trig)}$ $p_{\mathrm{T}}(\mu^{SS})/p_{\mathrm{T}}(\mu^{OS}) > 0.2$							
electrons		Exactly 1						
jets		At le	ast three, p	$p_{\rm T} > 20 {\rm G}$	eV,			
		of which	at least or	ne is b-tag	ged jet			
10.000	CRZ	CRttZ	CRtī	SRIncl	VR			
Mμμ [GeV]	[78,102]	[78,102]	[12,77]	[12,77]	No Mμμ cut			
Electron p _T [GeV]	< 20 > 20							
dimuon charge	C	OS SS OS No charge cut						
Meμ [GeV]		No Me	u ₁ cut		$30 < Me\mu_1 < 110$			

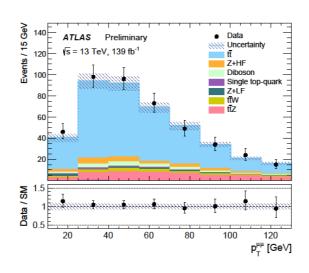
Background Model and Fit

- Background Model: using a semi-data driven approach where the MC is used as a base template for the backgrounds and the yield is normalized to the data in control regions using a maximum likelihood fit
- Fitting strategy:
 - **CR-only Fit ('Background-only')**: 3 free-floating parameters (μ_{tz} , μ_{zjets} , μ_{ttbar}) used for normalization of background yields to data. A single-bin likelihood fit is done simultaneously in 3 CRs. This configuration is used to test background modeling and get predictions in SR.
 - Signal + Background Fit (Exclusion Fit): A simultaneous fit in 3 CRs + 1 SR window. Additional parameter μ_{signal} for the signal strength. Hypothesis testing done and limits extracted using CLs approach.
 - Hypothesis tests done for $M_A = [15,16,17,18.....45,47,49...71,73,75]$ GeV (45 in total)
 - Optimized M $\mu\mu$ SR windows to maximize signal-to-background for each mass
 - 15 30 GeV: 1.5 GeV
 - 31 45 GeV: 2 GeV
 - 46 60 GeV: 3 GeV
 - 61 75 GeV : 4 GeV

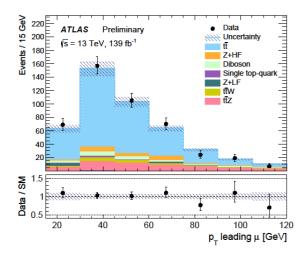
Results with CR-only Fit

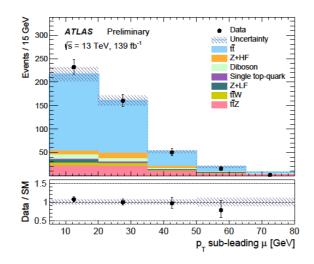
Post-Fit Yields

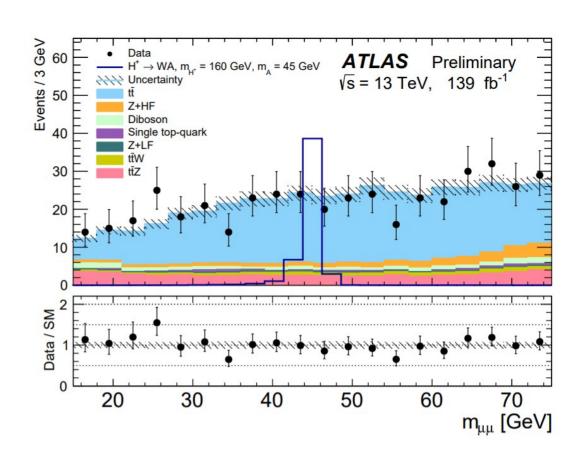

- Post-fit yields in various kinematic regions are shown with stat + sys errors
- CRZ, CRttbar & CRttZ agree by construction
- Encouraging to see good agreement in the VR and SRInclusive
 - shows normalization and fitting procedure is sound


Regi	ions	C	RZ	($CRt\bar{t}$		$\mathbb{C}\mathbf{R}tar{t}Z$		VR	SRIr	nclusive
Observed	d events	8	803		190		635		529	4	465
	Total	803	±28	190	±14	635	±25	541	±43	470	±37
	$t\bar{t}$	136	±21	170	±14	97	±19	388	±46	320	±39
Fitted	Z+HF	491	±49	0.72	2 ± 0.16	43	± 8	18	± 6	29	± 6
background	Z+LF	84	±29	0.41	± 0.14	12	± 4	2.82	2 ± 0.98	13	± 4
events	$t\bar{t}Z$	52	± 14	6.40	± 1.64	327	±83	76	±19	64	±16
	diboson	34	± 17	0.58	3 ± 0.29	147	±73	32	±16	22	± 11
	W+jets	0.01	± 0.01	0.40	± 0.39	0	± 0	0.08	8 ± 0.07	0.49	9 ± 0.48
	single top	4.13	± 0.29	4.38	3 ± 0.23	2.39	9 ± 0.12	9.00	0.46	6.17	7 ± 0.33
	$t\bar{t}W$	1.06	\pm 0.15	7.43	3 ± 0.97	6.4	2 ± 0.83	14	± 2	16	± 2

- Normalization parameters consistent with other analyses:
 - $-\mu_{th} = 1.04 + /-0.10$
 - $-\mu_Z = 1.03 +/- 0.21$
 - $-\mu_{ttZ} = 1.61 + / 0.41$

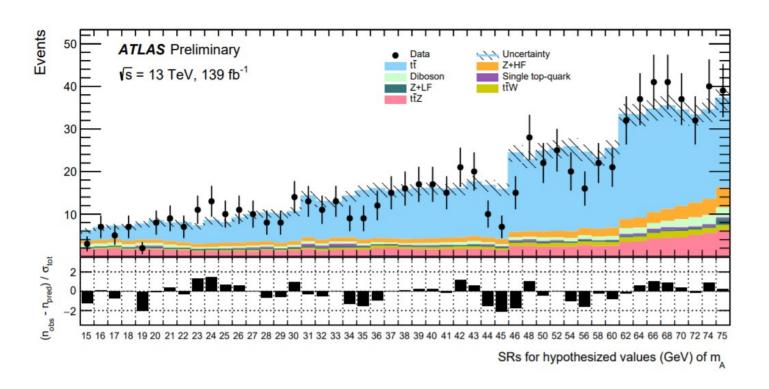

(compatible with 1.19 +/- 0.12 from


Bkg validation: Post-Fit Data/MC in SRInclusive


- Good data/MC agreement seen in all lepton kinematics in the SR
- Demonstrates that normalization from CR → SR and fitting procedure is reliable

μμ mass spectrum

- Observing smooth distribution, no significant excess
 - Small dips 35, 45 and 55 GeV
 - Small bumps 24, 42, 65 GeV
- Signal overlaid on background for demonstration, not used in this fit

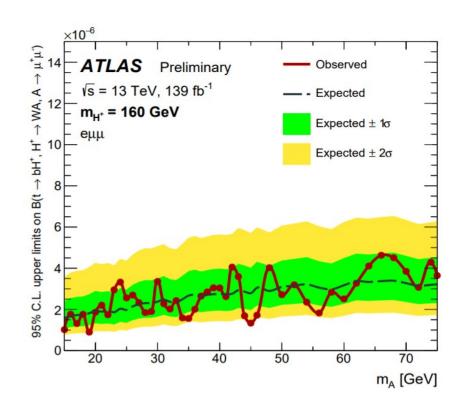


Assumptions on signal:

$$\sigma$$
 = 832 pb, B(t \rightarrow bH+, H+ \rightarrow WA, A \rightarrow µµ) = 9e-6

Data in SR windows

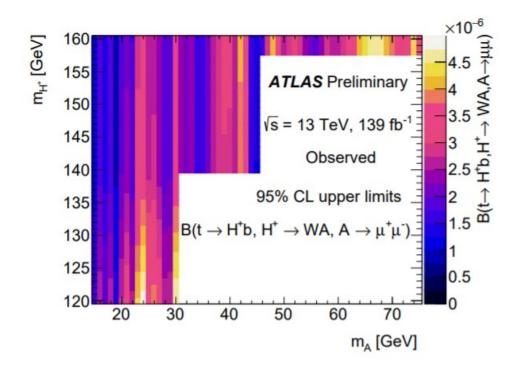
- Observed Vs expected events counts in individual SR regions after application of di-muon mass cuts to inclusive SR
- Steps at 30, 45, 60 GeV due to change in width of mass window

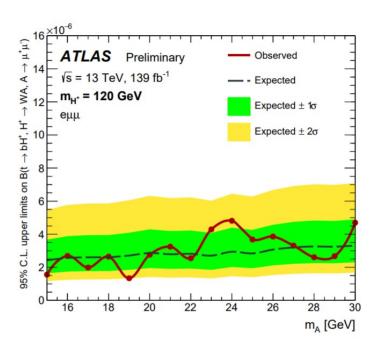


Results with Signal + Background Fit (Exclusion Fit)

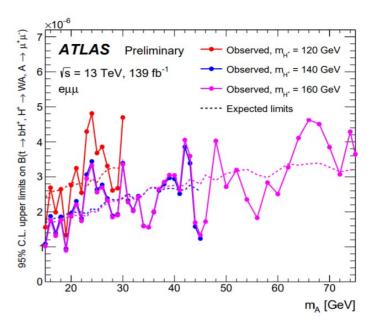
Observed limits

- S + B fit: simultaneous single-bin fit in 3 CRs + 1 SR window. Limits set on B(t → bH+, H+→ WA, A→μμ)
- Hypothesis tests done:
 - in 1 GeV steps for $M\mu\mu$ < 45 GeV
 - in 2 GeV steps for $M\mu\mu > 45$ GeV
- Optimized $M\mu\mu$ SR windows to maximize signal-to-background for each mass-point
 - 15 30 GeV: 1.5 GeV
 - 31 45 GeV: 2 GeV
 - 46 60 GeV: 3 GeV
 - 61 75 GeV: 4 GeV
- Small peaks/dips match mass plot
- Most significant p-value is at mA = 24 GeV of 0.10 with significance of 1.24 σ

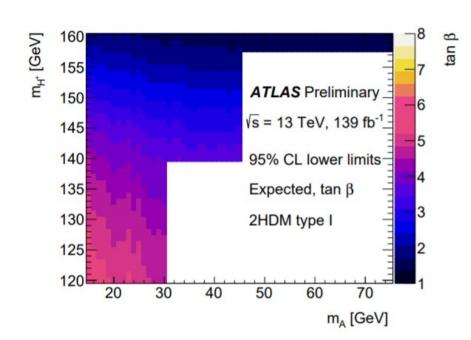

Determined prior to unblinding

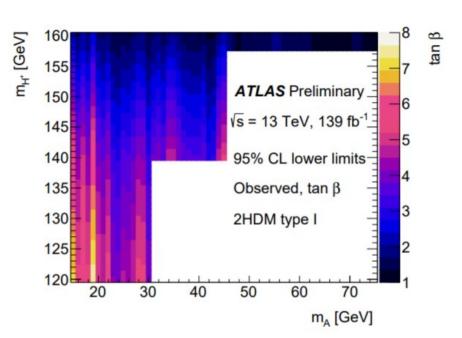


No significant excess observed


Observed limits

 2D limits generated by linearly interpolating between the 1D limits from the tested H+ mass points in 1 GeV steps


Limits for H+ = 120 GeV



14 / 30 Limits overlaid for various H+ masses

2 Higgs Doublet Model (2HDM) Interpretation

- We re-interpret branching ratio results as lower limits on tan β in 2HDM Type I (reminder: tan β is ratio of the VEVs in 2 Higgs Doublet Fields)
- Values of tan β from 0.5 to 10 are tested, lower limits range from 1.1 to 7.7
- Interpolation done in 1 GeV steps, same method as before
- 2HDMC calculates all the branching ratios needed:
 - Given 2HDM type, m_h . m_H , m_A , m_{H+} , m_{12}^{sq} , $tan\beta$, $sin(\beta-\alpha)$, λ_6 and λ
 - 3 scenarios defined in 1312.5571; we represent limits for type I scenario using mH = 300 GeV and m_{12}^{sq} =25600 GeV

Summary

- We present the first search in ATLAS for H+ \rightarrow WA with 15 < M $\mu\mu$ < 75 GeV
- No significant deviation from Standard Model expectation is observed.
 Data shows excellent agreement with SM predictions.
- The most stringent exclusion limits on B(t \rightarrow bH+, H+ \rightarrow WA, A \rightarrow µµ) are placed by exploiting Run 2 dataset
- First lower limits on tan β in the (mH+, mA) parameter space are set
- Public page for results to be live soon

Backup

Systematic Uncertainties

- All major systematic sources have been added to the fit
- Background MC:
 - Experimental: JET, JES, b-tagging, flavour tagging, pileup, muons, electrons
 - Theory: ttbar generator, shower and radiations systematics
- Signal MC:
 - Experimental: same as background
 - Cross-section uncertainties applied using Top recommendations
 - Custom systematic: Interpolation error for Splines

Systematics Breakdown in SR

- Breakdown of systematics in representative SR bins, post-fit
- Average systematic across bins is ~ 20%
- Main source of error on bkg yields are from:
 - Uncertainty on normalization parameters
 - MC stat error
 - ttbar theory systematics
- Reduced systematics shown for brevity, see Note for full list

Uncertainty of channel	SR15	SR31	SR48	SR70
Total background expectation	5.47	13.55	21.89	32.52
Total statistical $(\sqrt{N_{\rm exp}})$	± 2.34	± 3.68	± 4.68	± 5.70
Total background systematic	$\pm 0.87 [15.88\%]$	$\pm 2.84 [20.99\%]$	±4.87 [22.26%]	±6.52 [20.05%]
MC_gamma_stat_SR15	±0.49 [8.9%]	±0.00 [0.00%]	±0.00 [0.00%]	±0.00 [0.00%]
MC_gamma_stat_SR31	$\pm 0.00 [0.00\%]$	± 0.74 [5.5%]	$\pm 0.00 [0.00\%]$	$\pm 0.00 [0.00\%]$
MC_gamma_stat_SR70	$\pm 0.00 [0.00\%]$	±0.00 [0.00%]	$\pm 0.00 [0.00\%]$	$\pm 1.32 [4.1\%]$
MC_gamma_stat_SR48	±0.00 [0.00%]	±0.00 [0.00%]	± 0.94 [4.3%]	$\pm 0.00 [0.00\%]$
alpha_ttbarshowerSysNominal	$\pm 0.49 [9.0\%]$	$\pm 2.10 [15.5\%]$	±3.65 [16.7%]	$\pm 4.88 [15.0\%]$
mu_ttZ	± 0.45 [8.3%]	± 0.45 [3.3%]	± 0.64 [2.9%]	± 1.16 [3.6%]
alpha_db_Xsec	± 0.39 [7.1%]	± 0.32 [2.3%]	$\pm 0.30 [1.4\%]$	± 0.95 [2.9%]
alpha_ttbargenSysNominal	± 0.38 [6.9%]	± 1.63 [12.0%]	$\pm 2.83 [12.9\%]$	$\pm 3.78 [11.6\%]$
mu_Top	± 0.21 [3.9%]	± 0.91 [6.7%]	± 1.59 [7.3%]	$\pm 2.12 [6.5\%]$
alpha_MUON_SCALE	± 0.12 [2.1%]	$\pm 0.17 [1.3\%]$	$\pm 0.28 [1.3\%]$	± 0.56 [1.7%]
alpha_ttbarradSysNominal	$\pm 0.08 [1.4\%]$	± 0.33 [2.4%]	± 0.58 [2.6%]	± 0.77 [2.4%]
alpha_JET_Flavor_Response	± 0.06 [1.1%]	$\pm 0.08 [0.62\%]$	$\pm 0.12 [0.55\%]$	$\pm 0.00 [0.00\%]$
alpha_zLF_Xsec	$\pm 0.06 [1.1\%]$	$\pm 0.06 [0.42\%]$	$\pm 0.06 [0.26\%]$	$\pm 0.06 [0.18\%]$
alpha_JET_GroupedNP_2	$\pm 0.05 [0.96\%]$	$\pm 0.02 \ [0.16\%]$	$\pm 0.22 [1.00\%]$	$\pm 0.03 \ [0.10\%]$
mu_Z	$\pm 0.05 [0.90\%]$	$\pm 0.06 [0.42\%]$	$\pm 0.08 [0.37\%]$	$\pm 0.19 [0.57\%]$
alpha_MUON_ID	$\pm 0.03 [0.63\%]$	$\pm 0.12 [0.85\%]$	$\pm 0.18 [0.80\%]$	$\pm 0.06 [0.19\%]$
alpha_MUON_MS	$\pm 0.03 [0.62\%]$	$\pm 0.11 [0.85\%]$	± 0.62 [2.8%]	± 0.01 [0.02%]
alpha_JET_GroupedNP_1	$\pm 0.03 \ [0.56\%]$	$\pm 0.03 \ [0.21\%]$	$\pm 0.20 \ [0.93\%]$	$\pm 0.06 \ [0.20\%]$
alpha_EG_Resolution	$\pm 0.03 [0.55\%]$	$\pm 0.10 \ [0.77\%]$	±0.06 [0.26%]	$\pm 0.05 [0.17\%]$
alpha_leptonWeight_EL_EFF_Reco	$\pm 0.02 [0.36\%]$	$\pm 0.12 [0.92\%]$	$\pm 0.15 [0.67\%]$	$\pm 0.19 [0.58\%]$
alpha_bTagWeight_FT_EFF_B_syst	$\pm 0.02 [0.34\%]$	$\pm 0.00 [0.03\%]$	$\pm 0.02 [0.09\%]$	$\pm 0.05 [0.15\%]$
alpha_leptonWeight_EL_EFF_Reco	$\pm 0.02 [0.32\%]$	$\pm 0.08 [0.59\%]$	$\pm 0.13 [0.61\%]$	$\pm 0.18 [0.55\%]$
alpha_EG_Scale	±0.01 [0.26%]	$\pm 0.14 [1.0\%]$	±0.06 [0.29%]	$\pm 0.03 [0.09\%]$
alpha_bTagWeight_FT_EFF_Light_syst	$\pm 0.01 \ [0.23\%]$	± 0.01 [0.07%]	$\pm 0.06 \ [0.25\%]$	± 0.07 [0.22%]
alpha_ttW_Xsec	$\pm 0.01 \ [0.21\%]$	$\pm 0.05 [0.34\%]$	$\pm 0.10 [0.48\%]$	$\pm 0.19 [0.58\%]$
alpha_leptonWeight_MUON_EFF_	$\pm 0.01 \ [0.21\%]$	$\pm 0.05 \ [0.38\%]$	$\pm 0.03 [0.16\%]$	$\pm 0.04 \ [0.12\%]$
alpha_leptonWeight_EL_EFF_Iso_	±0.01 [0.14%]	$\pm 0.03 \ [0.25\%]$	$\pm 0.06 \ [0.26\%]$	$\pm 0.08 \ [0.23\%]$
alpha_JET_GroupedNP_3	$\pm 0.01 \ [0.14\%]$	$\pm 0.04 \ [0.30\%]$	$\pm 0.00 \ [0.01\%]$	$\pm 0.02 \ [0.08\%]$
alpha_bTagWeight_FT_EFF_C_syst	$\pm 0.00 \; [0.04\%]$	$\pm 0.00 \ [0.02\%]$	$\pm 0.03 \ [0.15\%]$	$\pm 0.01 \ [0.02\%]$
alpha_st_Xsec	$\pm 0.00 \; [0.00\%]$	$\pm 0.03\ [0.20\%]$	$\pm 0.02 \ [0.10\%]$	$\pm 0.03 \ [0.08\%]$

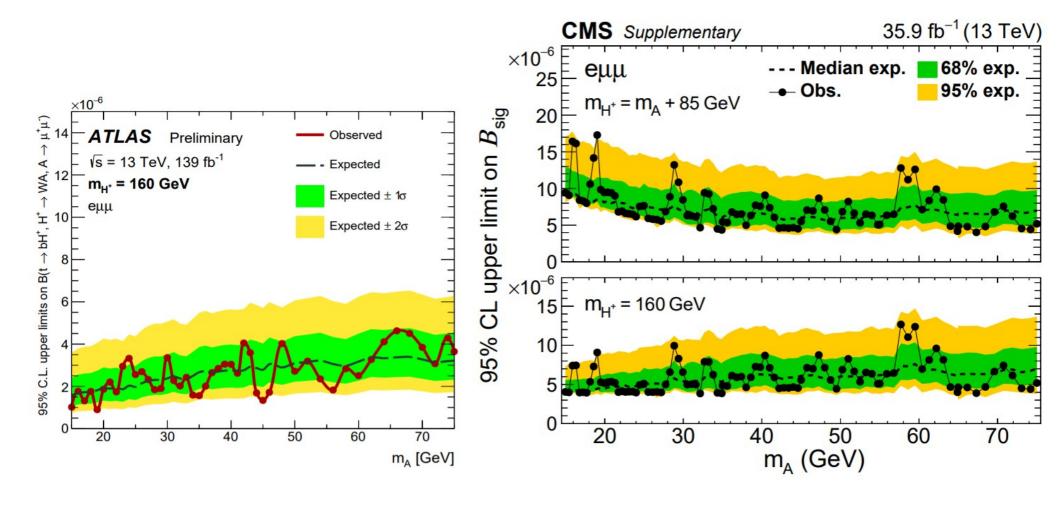
Object selection and Triggers

Muons

CutValue/descriptionIDLowPtAcceptance $p_T > 3$ GeV, $|\eta| < 2.7$ IsolationFCLooseIP $z_0 \sin \theta < 0.5 \text{ mm}$ $d_0/\sigma_{d_0} < 3$

Electrons

Cut	Value/description
ID	MediumLLH
Acceptance	$p_{\rm T} > 5 {\rm GeV}, \eta < 2.47$
Isolation	FCLoose
High p _T Isolation	FCHighPtCaloOnly
IP	$z_0 \sin \theta < 0.5 \text{ mm}$
	$d_0/\sigma_{d_0} < 5$

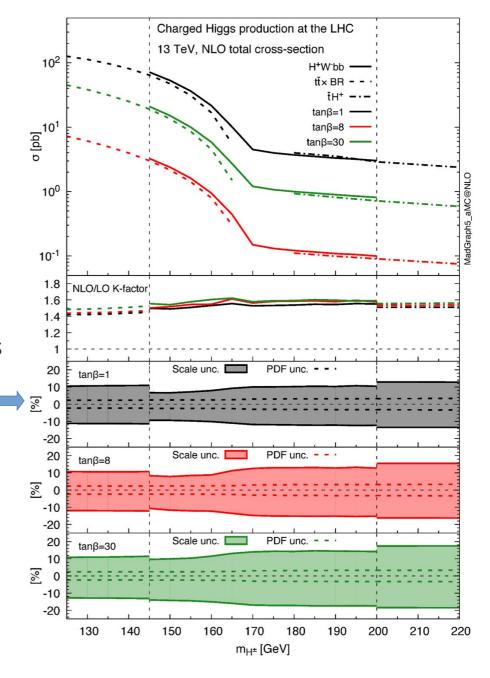

Jets

Cut	Value/description
Acceptance JVT b-tagging	$p_{\rm T} > 20 { m GeV}, \eta < 2.5$ Tight WP, JVT > 0.5 for $ \eta < 2.4$ and $20 < p_{\rm T} < 60 { m GeV}$ MC2c10 > 0.64, $\epsilon_b = 77.53\%$

Triggers: single and di-muon triggers

Trigger	Run period
HLT_mu20_iloose_L1MU15	276262 - 284484
HLT_mu26_ivarmedium	297730 -
HLT_2mu10	276262 - 284484
HLT_2mu14	297730 -

Comparison with CMS



Interpreting tt→ H⁺→WA→µµ

- So far limits have been set on top branching ratio
 - Implicitly assumes only tt production mechanism
 - Needs top cross-section
- Today we would like to propose setting 2HDM tanβ li
 - Re-interpreting the branching ratio results.

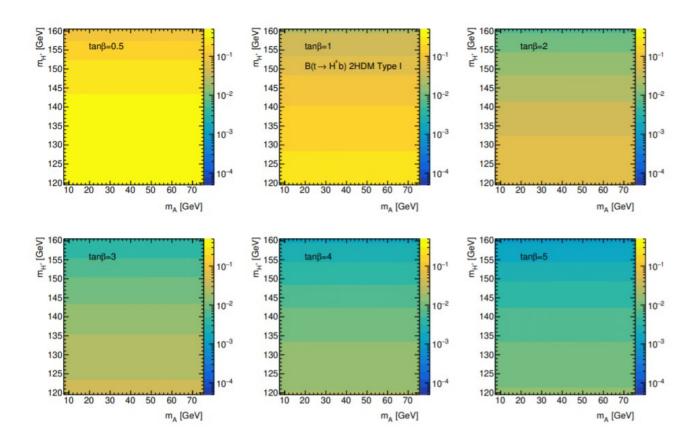
2HDM tools

- 2HDMC calculates all the branching ratios needed
 - Given 2HDM type, m_h . m_H , m_A , m_{H^+} , m_{12}^{sq} , tanβ, sin(β-α), λ_6 and λ_7
 - 3 scenarios defined 1312.5571
 - But for H+ it seems only type Higgs masses & tanβ matter
- More recently, Degrande et al. calculated pp → tH+bb at NLO with widths,
 - Grid of (m_{H+}, tanβ) available
 - Includes single top cross-section
 - More important as m_{H+}~m_t
 - But not what we simulated

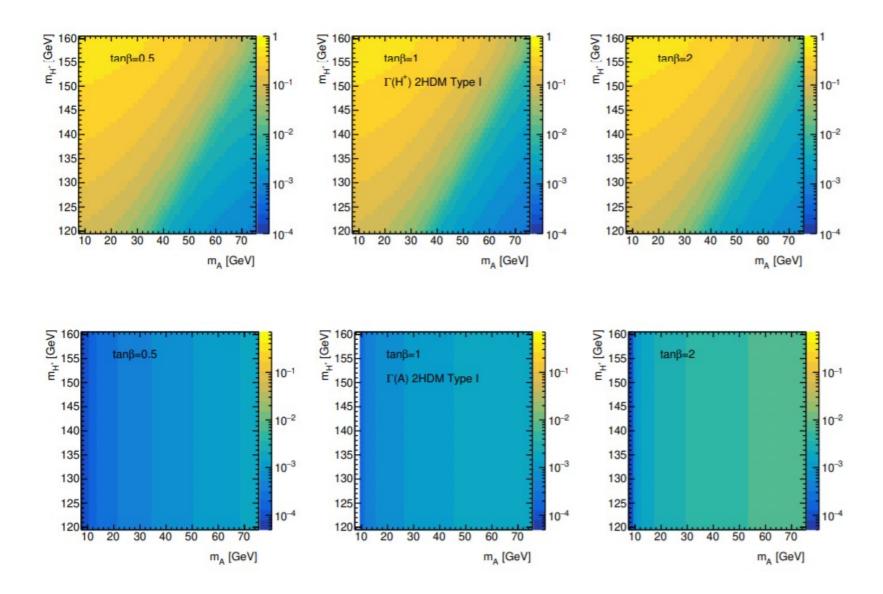
2HDMC scenarios

Parameter	Scenario A	Scenario B	Scenario C
Type	I	II	II
M_h (GeV)	125	125	125
M_H (GeV)	300	300	400
M_A (GeV)	330	270	500
M_{H^+} (GeV)	230	335	550
M_h (GeV)	25600	1798	15800
$\tan \beta$	1.5	50	10
$\sin(\beta - \alpha)$	0.901314	0.999001	0.999
λ_6	0	0	0
λ_7	0	0	0

- Try these scenarios but with m_A , m_{H+} , $tan\beta$ scanned as required
- B and C give results always identical to 3 figures


2HDM tools compared

m_{H^+}	$\tan \beta$	Full NLO	2HDMC	Ratio
	1	70.4 fb	79.7 fb	0.88
145 GeV	3	9.86 fb	9.92 fb	0.99
	10	3.63 fb	3.56 fb	1.02
160 GeV	1	21.3 fb	19.9 fb	1.07
	3	2.70 fb	2.32 fb	1.16
	10	1.04 fb	0.83 fb	1.25


- We compare Degrande (full) with 2HDMC $t \rightarrow H+$ BR, multiplied by 831.76~pb tt cross-section
 - Note: Degrande seems to be quoting only H⁺ XS, not including H⁻
- Significant increase at 160 GeV was expected
- Dependence upon tanβ any thoughts anyone?
- We use m_{H+} 100-160, Degrande 145-200, so matching would be tricky
- Fortunately limits are set at bold points where differences are small.

BR (t→ H+b) in Scenario A

Example BR's for different tan beta values

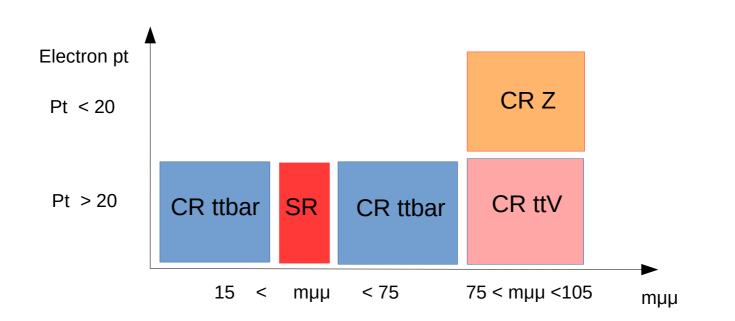
Decay Widths

Z+jets break down

- Action Item: What's the breakdown of different flavour of Z-jets in CR and SR? What if you float a different component of Z+jets?
- We summarize the breakdown of Z + jets by flavour on the right. HF dominates in both SR and CR
- If we let mu_z
 constrain only Z+jets
 'Bfilter', we still get
 the same value i.e.
 mu_z = 1.03

	CRZ	%	SR	%
Zjets 'Bfilter'	440.6	78	20.4	50
Zjets 'CfilterBVeto'	34.1	6	7.3	18
Zjets Bfilter + CFilter	474.7	85	27.7	68
Zjets all other	83.9	15	12.5	31
total	558.6		40.2	

• We have updated the fit and classify the Bfilter and Cfilter as Z + HF. We let mu_Z constrain Z + HF in CRZ and we find mu_Z = 1.03 +/- .2


Cutflow for signal

	H160a15		H160a45		H160a75		H140a15		H120a15		H120a30	
	events	eff., %										
$\mathcal{L} \times \sigma \times \mathcal{B} \times \epsilon_{gen}$	135.5	100	141.4	100	140.9	100	138.2	100	142.1	100	145.0	100
≡ 2 muons	55.8	41.2	62.3	44	68.8	48.8	51.1	37	43.6	30.7	50.3	34.7
muon p _T selection	45.0	33.2	54.0	38.2	63.2	44.9	37.8	27.4	27.6	19.4	30.6	21.1
≥ 3 jets, 20 GeV	36.7	27.1	44.4	31.4	52.0	36.9	32.6	23.6	24.1	17.0	27.0	18.6
≥1 b-jet	26.9	19.9	32.5	23.0	38.5	27.3	26.6	19.3	20.7	14.5	23.1	16.0
OS muons	24.2	17.8	29.9	21.2	36.1	25.6	23.3	16.8	16.7	11.8	19.1	13.2
≡1 electron	5.3	3.9	6.8	4.8	8.2	5.8	4.9	3.5	3.4	2.4	4.1	2.8
electron $p_T > 20 \text{ GeV}$	4.6	3.4	5.9	4.1	7.2	5.1	4.2	3.0	3.0	2.1	3.5	2.4
Mass window	4.2	3.1	4.8	3.4	5.2	3.7	3.8	2.7	2.6	1.8	2.9	2.0
$\frac{p_{\rm T}(\mu_2^{\rm SS})}{p_{\rm T}(\mu_1^{\rm OS})} > 0.2$	3.8	2.8	4.4	3.1	4.9	3.5	3.5	2.5	2.4	1.7	2.6	1.8

Observing respectable signal efficiencies across dimuon spectrum

ttbar estimates with side-bands (April 2020)

- Testing out new CR for estimating ttbar: using sidebands of the signal windows. Sidebands have ~ 85% ttbar ..so can serve as good CR.
- Idea: We do the mass scan in 4 GeV signal windows for 15 < m $\mu\mu$ < 75 . Everything outside the signal window would be the CR to constrain ttbar.
- Concerns:
 - Blinded analysis, so can't look at the data in the sidebands right now.
 - Need to come up with a CR to study ttbar
 - Issue of using part of the SR as the CR i.e. region with high signal contamination (from another mass point however)

30 / 30