Charged Higgs boson decays with NLO corrections in the NMSSM

[Thi Nhung Dao, Margarete Mühlleitner, Shruti Patel, KS, Eur.Phys.J.C 81 (2021) 4, 340]

Kodai Sakurai (Tohoku U.)

Collaborators:

Thi Nhung Dao ^A, Margarete Mühlleitner ^B, Shruti Patel ^B (A: ICISE, Vietnam; ^B: KIT, Germany)

Charged Higgs@LHC, online

Introduction

- Supersymmetry: hierarchy problem, gauge coupling unification, dark matter, etc.
- The current LHC experiment data:
 - No SUSY particles have been found.
 - The discovered Higgs boson (125 GeV) behaves very SM-like.
 - →The properties will be precisely measured in the future collider experiments such as HL-LHC, ILC, CEPC, FCC-ee.

Introduction

- Supersymmetry: hierarchy problem, gauge coupling unification, dark matter, etc.
- The current LHC experiment data:
 - No SUSY particles have been found.
 - The discovered Higgs boson (125 GeV) behaves very SM-like.
 - →The properties will be precisely measured in the future collider experiments such as HL-LHC, ILC, CEPC, FCC-ee.
- This requires that theoretical predictions are evaluated accurately.
 - SUSY loop corrections to observables for the Higgs boson may be significant.
 - Not only the discovered Higgs boson but also extra Higgs boson should be precisely calculated.
 - Direct searches at LHC
 - Discrimination of NP models when extra Higgs is discovered.
- → While there are a lot of works for the precise calculations in MSSM, we study next-to minimal supersymmetric model (NMSSM).

Precise calculations of Higgs bosons

Many studies of precise calculations of Higgs bosons have been performed in the NMSSM.

```
• Higgs boson masses (Full 1-loop ) [G. Degrassi, P. Slavich, NPB 825 (2010)], etc.  (O(a_t \, a_S \, , \, a_t^2) \, 2\text{-loop})  [M. Mühlleitner, D. T. Nhung, H. Rzehak, K. Walz, JHEP05(2015)] [T.N. Dao, R. Gröber, M. Krause, M. Mühlleitner, H. Rzehak], etc.  (O((a_t + a_{\lambda} + a_t \, )^2) \, 2\text{-loop})  [T. N. Dao, M. Gabelmann, M. Mühlleitner, H. Rzehak, 2106.06990]
```

Higgs boson decays

```
- H_{i}, A_{i} \rightarrow ff, VV
                                       (Full 1-loop)
                                                                     [F. Domingo, S. Heinemeyer, S. Paßehr, G. Weiglein, EPJC78(2018)]
                                                                      [D. T. Nhung, M. Muhlleitner, J. Streicher, K. Walz, JHEP11 (2013)]
                                       (Full 1-loop)
- H_i \rightarrow H_i H_k
                                                                     [G. Belanger, V. Bizouard, F. Boudjema, G. Chalons, PRD96 (2017)]
                                        (O(a_t a_S) \text{ 2-loop})
                                                                      [M. Mühlleitner, D. T. Nhung, H. Ziesche, JHEP 12 (2015)]
- A_i \rightarrow \overline{\tilde{t}}\tilde{t}
                                       (Full 1-loop)
                                                                      [J. Baglio, C. Krauss, M. Muhlleitner, K. Walz, JHEP 10 (2015)]
      All 2-body neutral Higgs decays, BRs
                                                                      [J. Baglio, T. N. Dao, M. Mühlleitner, 1907.12060]
                                                                      T. N. Dao, L. Fritz, M. Krause, M. Muehlleitner, S. Patel, Eur. Phys. J. C80
- H_i^{\pm} \rightarrow WH_i
                                       (Full 1-loop)
                                                                     (2020)
```

- → Missing part for Higgs boson decays is charged Higgs boson decays.
 - What is typical size of NLO corrections for each decay?

Charged Higgs decays in the NMSSM

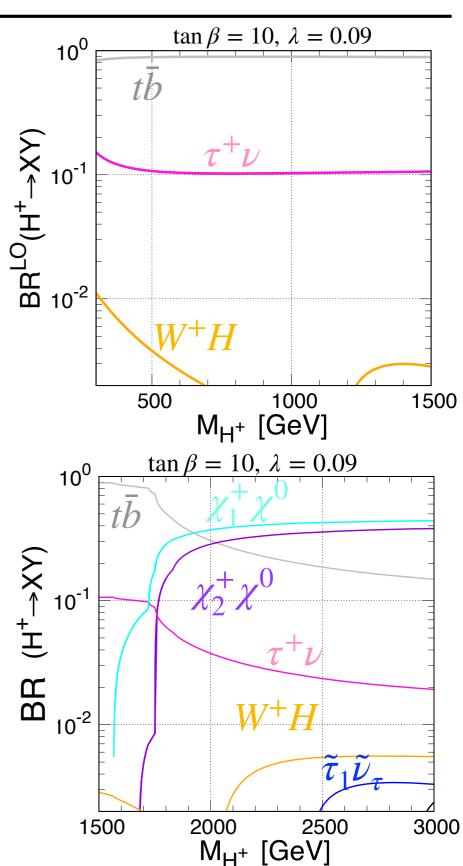
Charged Higgs decays in the NMSSM can be categorized as follows:

1. Decays into SM particles

$$H^+ \to q\bar{q}', \ (t\bar{b}, \ t\bar{s}, \ t\bar{d}, \dots)$$

 $H^+ \to \ell\nu, \ (\tau^+\nu, \ \mu^+\nu, \ e^+\nu, \dots)$
 $H^+ \to W^+V \ (V = Z, \gamma)$

2. Decays into extra Higgs bosons + W bosons


$$H^+ o W^+ H_i$$
 (H_i : Neutral Higgs bosons)

3. Decays into SUSY particles

$$H^{+} \to \tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{+}, \quad (i = 1, 2, j = 1, ...5)$$

$$H^{+} \to \tilde{q} \bar{\tilde{q}}', \quad (\tilde{t} \bar{\tilde{b}}, ...)$$

$$H^{+} \to \tilde{\ell} \tilde{\nu}, \quad (\tilde{\tau}^{+} \tilde{\nu}, ...)$$

Renormalization

• Higgs potential: mixed OS-DR scheme. [K. Ender, T. Graf, M. Muhlleitner, H. Rzehak, PRD85(2012)] etc.

$$V_{H} = |\lambda|^{2} |S|^{2} \left(H_{u}^{\dagger} H_{u} + H_{d}^{\dagger} H_{d} \right) + \left| \lambda \left(H_{u} i \sigma_{2} H_{d} \right) + \kappa S^{2} \right|^{2} + \frac{1}{2} g_{2}^{2} \left| H_{u}^{\dagger} H_{d} \right|^{2} + \frac{1}{8} (g_{1}^{2} + g_{2}^{2}) \left(H_{u}^{\dagger} H_{u} - H_{d}^{\dagger} H_{d} \right)^{2} + m_{H_{u}}^{2} H_{u}^{\dagger} H_{u} + m_{H_{d}}^{2} H_{d}^{\dagger} H_{d} + m_{S}^{2} |S|^{2} + \left[A_{\lambda} \lambda \left(H_{u} i \sigma_{2} H_{d} \right) S + \frac{1}{3} \kappa A_{\kappa} S^{3} + \text{h.c.} \right]$$

Input parameters (12): T_{H_1} , T_{H_2} , T_{H_3} , M_W , M_Z , $\alpha_{\rm em}$, $\tan \beta$, v_S , $m_{H^{\pm}}$, λ , κ , A_{κ}

$$T_{H_1}, T_{H_2}, T_{H_3}, M_{H^{\pm}}, M_Z, M_W, \alpha_{\mathrm{em}}$$
 On-shell $\hat{T}_{H_i} = 0, \ \hat{\Sigma}_{VV}(M_V^2) = 0, \ \hat{\Gamma}_{\bar{f}f}\gamma(0) = 0$

tan
$$\beta$$
, v_S , λ , κ , A_{λ} , A_{κ} ,

(Wave function renormalization for H_d , H_u , S)

• Electroweakino sector: OS scheme or \overline{DR} scheme [J. Baglio, T. N. Dao, M. Muhlleitner, EPJC 80 (2020) 10, 960]

 M_1, M_2 : We have 7 OS conditions, i.e., $\Sigma_{ii}^{\chi^{\pm,0}}(m_{\chi_i^{\pm,0}}^2)=0$

OS1:
$$\chi_i^+ \sim \tilde{W}^+ : OS, \chi_k^0 \sim \tilde{B} : OS,$$

OS2: $\chi_i^0 \sim \tilde{W}^3 : OS, \quad \chi_k^0 \sim \tilde{B} : OS,$

Decay rates of charged Higgs bosons at NLO

• We evaluated NLO EW (+SUSY EW) and NLO SUSY QCD corrections to the following processes:

$$H^{\pm} \to tb, \quad H^{\pm} \to \tau \nu, \quad H^{\pm} \to \chi_i^+ \chi_j^0, \quad H^+ \to \tilde{t}\tilde{b}, \quad H^+ \to \tilde{t}\tilde{\nu}, \quad H^+ \to WH_i$$

Schematic formula for NLO decay rates

$$\Gamma(H^{\pm} \to X_1 X_2) = (\text{Resummed factors}) \times \Gamma_{\text{LO}}(H^{\pm} \to X_1 X_2)$$

$$\times \left[1 + \Delta^{\text{QCD}} + \Delta^{\text{SUSYQCD}} + \Delta^{(\text{SUSY+}) \text{ EW}} + \Delta^{\text{H}^+\text{H}^-} + \Delta^{\text{H}^+\text{G}^-/\text{W}^-} \right]$$

$$\xrightarrow{X_2} + (\text{Real corrections})$$

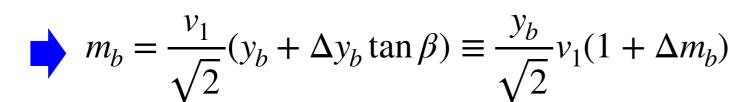
(Resumed factors): Δ_b corrections (H+ \rightarrow tb), Z factor (H+ \rightarrow W H_i)

[M. Carena, D. Garcia, U. Nierste, [K. E. Williams, G. Weiglein, Phys. Lett. B660 C. E.M. Wagner, NPB 577(2000)], etc. (2008)]

- resumed factors, Δ_{QCD} are calculated by NMSSMCALC(EW).

[J. Baglio, T. N. Dao, M. Muhlleitner, EPJC 80 (2020) 10, 960]

Δ_b corrections

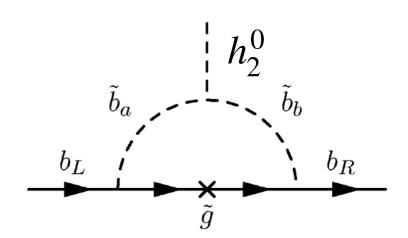

For $H^{\pm} \to tb$, it is known that SUSY particles corrections to the bottom Yukawa coupling are significant in large $\tan \beta$ regime.

(Ex.) MSSM

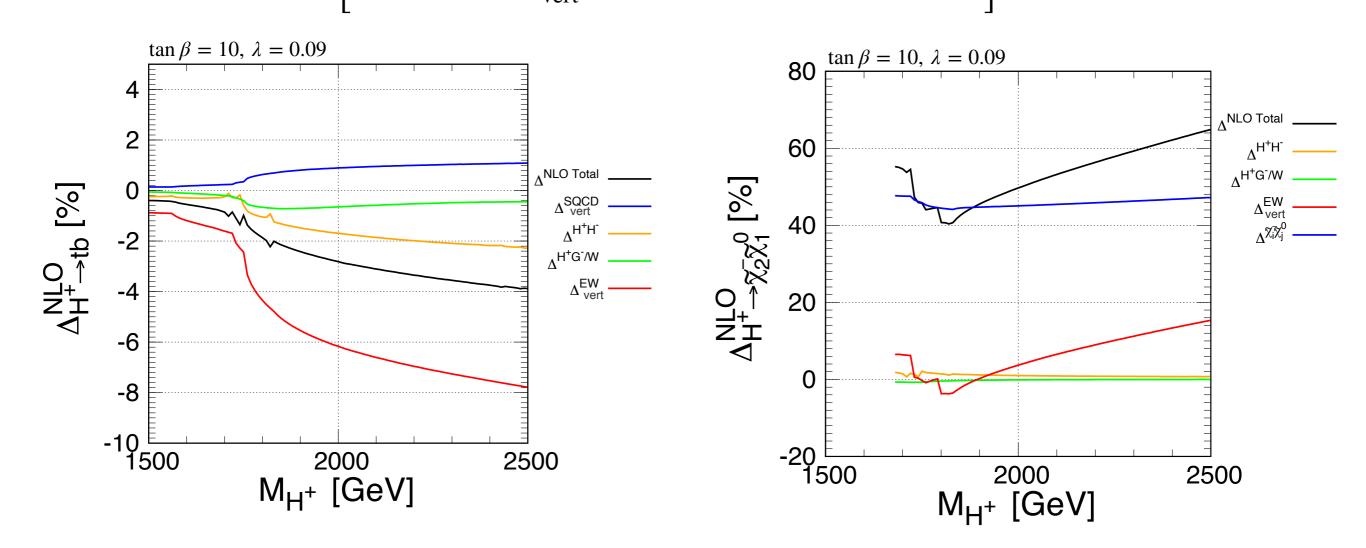
Effective lagrangian for bottom Yukawa in gauge basis:

$$\mathscr{L}_{eff} = y_b h_1^0 b \overline{b} + \Delta y_b h_2^0 b \overline{b} .$$

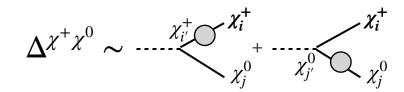
After h_1^0 and h_2^0 acquire VEV,



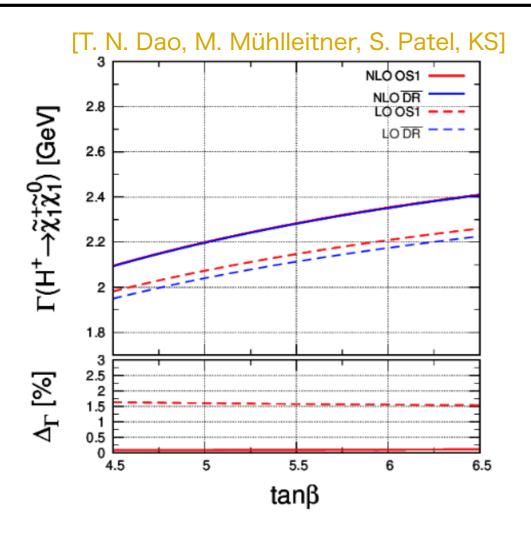
$$\bar{t}P_R bH^+: \frac{m_b}{v} \tan \beta \to \frac{m_b}{v} \tan \beta \frac{1}{1 + \Delta m_b}$$

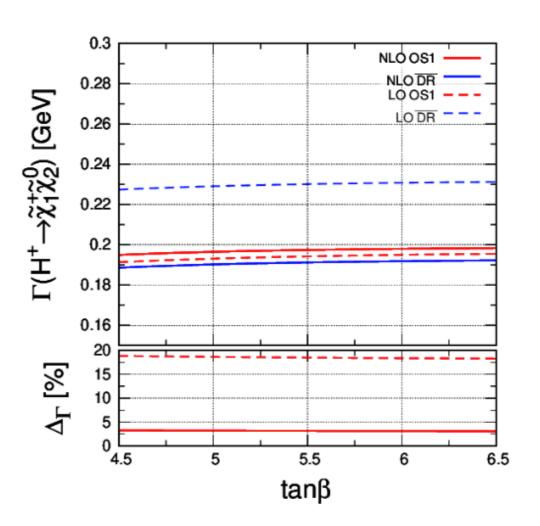

 Δm_b is proportional to $\tan \beta$.

 $\rightarrow \Delta m_b$ is significant if $\tan \beta \gg 1$ and this should be resummed.



Pure NLO corrections: BR(H+→tb), BR(H+→W+B)


$$\Gamma(H^{\pm} \to X_1 X_2) = (\text{Resummed factors}) \times \Gamma_{\text{LO}}(H^{\pm} \to X_1 X_2)$$
$$\times \left[1 + \Delta^{\text{QCD}} + \Delta^{\text{SQCD}}_{\text{vert}} + \Delta^{\text{EW}}_{\text{vert}} + \Delta^{\text{H}^+\text{H}^-} + \Delta^{\text{H}^+\text{G}^-/\text{W}^-} \right]$$



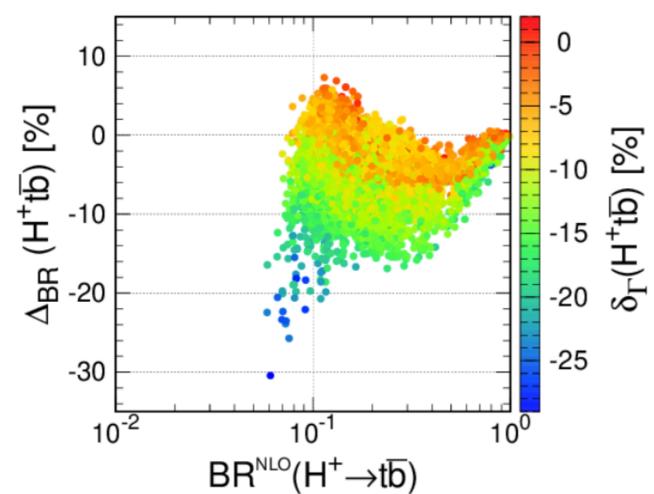
- For $H^+ \rightarrow tb$, EW corrections and SQCD corrections are destructive.
- ullet For $H^\pm o ilde \chi_2^+ ilde \chi_1^0$, WFRs for electroweakinos are significant.

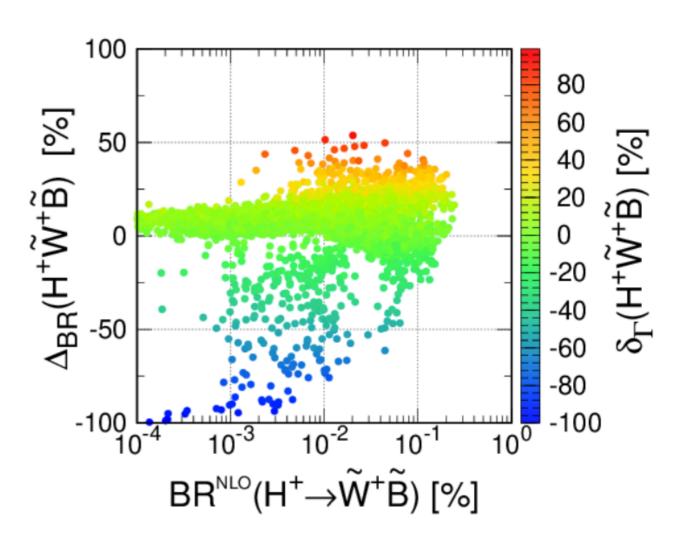
Impact for scheme difference for charged Higgs decays

• Scheme difference is defined by $\Delta_{\Gamma} \equiv \left| \frac{\Gamma^{\rm OS1} - \Gamma^{\rm DR}}{\Gamma^{\rm OS1}} \right|$.

$$\Delta_{\Gamma}^{1-\text{loop}}(H^+ \to \chi_1^+ \chi_1^0) \sim 0 \%$$
, $\Delta_{\Gamma}^{1-\text{loop}}(H^+ \to \chi_1^+ \chi_2^0) \sim 2.5 \%$,

→ We can see that theoretical error becomes small by including 1-loop corrections.


Scan analysis for NLO corrections


Scan range:

 $0.5~{\rm TeV} < m_{H^+} < 3{\rm TeV},~1 < t_{\beta} < 20,~0 < \lambda, |\kappa| < 0.7,$ also, soft breaking parameters, A terms are scanned.

$$\Delta_{\rm BR} = \frac{{\rm BR^{NLO} - BR^{LO}}}{{\rm max(BR^{NLO}, BR^{LO})}}, \quad \delta_{\Gamma} = \frac{\Gamma^{\rm NLO}}{\Gamma^{\rm LO}} - 1$$

- For $H^+ -> tb$, maximum size of NLO corrections is ~ -30%.
- For $H^+ -> \widetilde{W}^+ \widetilde{B}$, large corrections, $|\Delta_{BR}| \sim 100\%$, can appear.

Summary

- The Higgs boson will be precisely measured at the future collider experiments, such as the HL-LHC and the ILC.
 - → This means that the theoretical predictions should also accurately evaluated not only for the discovered Higgs bosons but also extra Higgs bosons.
- We study NLO (SUSY +)EW and SUSY QCD corrections for various charged Higgs bosons decays in the complex NMSSM.
 - $H^+ \rightarrow tb$: maximally ~I30%I NLO corrections are obtained.
 - $H^+ o \tilde{W}^+ \tilde{B}$: large corrections due to mixing of electroweakinos can be found in BR<1%.