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What is differentiable 
programming?
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Derivatives in machine learning
Deep learning is behind all recent advances 

Computer vision

TESLA AutopilotTop-5 error rate for ImageNet (NVIDIA devblog) VQ-VAE (Razavi et al. 2019)

Speech recognition/synthesis

Word error rates (Huang et al., 2014) Google Neural Machine Translation System (GNMT)

Machine translation

Generative models Autonomous driving
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Derivatives in machine learning
Deep learning is behind all recent advances 
= nonlinear differentiable functions (programs) 
whose parameters are tuned by gradient-based optimization

(Ruder, 2017) http://ruder.io/optimizing-gradient-descent/ 

http://ruder.io/optimizing-gradient-descent/
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Automatic differentiation
In practice the derivatives for gradient-based optimization come from
running differentiable code via automatic differentiation

Many names:
- Automatic differentiation
- Algorithmic differentiation
- Autodiff
- Algodiff
- Autograd
- AD

Also remember:
- Backpropagation (backward propagation of errors)
- Backprop

automatic 
differentiation
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Differentiable programming

● Differentiable programming:
Writing software composed of differentiable and parameterized building 
blocks that are executed via automatic differentiation and optimized in 
order to perform a specified task

● A generalization of deep learning (neural networks are just a class of more 
general differentiable functions)

Andrej Karpathy (2017)
“Software 2.0”
https://karpathy.medium.com/software-2-0-a64
152b37c35 

Execute differentiable code via automatic differentiation

https://karpathy.medium.com/software-2-0-a64152b37c35
https://karpathy.medium.com/software-2-0-a64152b37c35


How do we compute derivatives of 
computer code?



We can compute the derivatives not just of 
mathematical functions, but of general-purpose 
computer code (with control flow, loops, recursions, 
etc.)

Derivatives 
as code

Newton, c. 1665

Leibniz, c. 1675
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Derivatives 
as code

Baydin, Pearlmutter, Radul, Siskind. 2018. 
“Automatic Differentiation in Machine 
Learning: a Survey.” Journal of Machine 
Learning Research (JMLR)
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Manual

Analytic derivatives are needed for theoretical insight
- analytic solutions, proofs
- mathematical analysis, e.g., stability of fixed points

Find the analytical derivative using Calculus, and implement as code
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Manual

Analytic derivatives are needed for theoretical insight
- analytic solutions, proofs
- mathematical analysis, e.g., stability of fixed points

Unnecessary when we just need derivative evaluations for optimization

Find the analytical derivative using Calculus, and implement as code
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Symbolic differentiation
Symbolic computation with Mathematica, Maple, Maxima, 
and deep learning frameworks such as Theano
Problem: expression swell
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Symbolic computation with Mathematica, Maple, Maxima, 
and deep learning frameworks such as Theano
Problem: expression swell

Symbolic differentiation

Graph optimization
(e.g., in Theano)



Symbolic graph builders such as Theano and TensorFlow (1.0)
have limited, unintuitive control flow, loops, recursion

Problem: only applicable to closed-form mathematical functions

You can find the derivative of

but not of

Symbolic differentiation
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Finite difference approximation of          ,

Problem: we must select     and
we face approximation errors

Problem: needs to be evaluated      times, 
once with each standard basis vector

Numerical differentiation
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Finite difference approximation of          ,

Better approximations exist:
- Higher-order finite differences

e.g., center difference: 

- Richardson extrapolation
- Differential quadrature

These increase rapidly in complexity 
and never completely eliminate the error

Numerical differentiation
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Finite difference approximation of          ,

Better approximations exist:
- Higher-order finite differences

e.g., center difference: 

- Richardson extrapolation
- Differential quadrature

These increase rapidly in complexity 
and never completely eliminate the error

Numerical differentiation

Still extremely useful as a quick check of our gradient implementations
Good to learn:
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If we don’t need analytic derivative expressions, we can 
evaluate a gradient exactly with only one forward and one reverse execution

In machine learning, this is known as 
backpropagation or “backprop”

- Automatic differentiation is more than 
backprop

- Or, backprop is a specialized reverse mode 
automatic differentiation

Nature 323, 533–536 (9 October 1986)

Automatic differentiation



Backprop or automatic 
differentiation?
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1960s 1970s 1980s

Precursors

Kelley, 1960
Bryson, 1961
Pontryagin et al., 1961
Dreyfus, 1962

Wengert, 1964
Forward mode

Linnainmaa, 1970, 1976
Backpropagation

Dreyfus, 1973
Control parameters

Werbos, 1974
Reverse mode

Speelpenning, 1980
Automatic reverse mode

Werbos, 1982
First NN-specific backprop

Parker, 1985

LeCun, 1985

Rumelhart, Hinton, Williams, 1986
Revived backprop

Griewank, 1989
Revived reverse mode
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Recommended reading: 

Griewank, A., 2012. Who Invented the Reverse Mode of Differentiation? 
Documenta Mathematica, Extra Volume ISMP, pp.389-400.

Schmidhuber, J., 2015. Who Invented Backpropagation?
http://people.idsia.ch/~juergen/who-invented-backpropagation.html 

http://people.idsia.ch/~juergen/who-invented-backpropagation.html


Automatic differentiation
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Automatic differentiation
All numerical algorithms, when executed, evaluate to compositions of 
a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert, 1964)
- Alternatively represented as a computational graph showing dependencies
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Automatic differentiation
All numerical algorithms, when executed, evaluate to compositions of 
a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

f(a, b):

  c = a * b

  d = log(c)

  return d log*

a

b

c
d
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Automatic differentiation
All numerical algorithms, when executed, evaluate to compositions of 
a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

f(a, b):

  c = a * b

  d = log(c)

  return d

1.791 = f(2, 3)

log*

a

b

c
d

3

2
6

1.791

primal
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Automatic differentiation
All numerical algorithms, when executed, evaluate to compositions of 
a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

f(a, b):

  c = a * b

  d = log(c)

  return d

1.791 = f(2, 3)

[0.5, 0.333] = f’(2, 3)

log*

a

b

c
d

3

2
6

1.791
0.5

0.333

0.166 1

derivative
tangent, adjoint
“gradient”

primal
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Automatic differentiation
All numerical algorithms, when executed, evaluate to compositions of 
a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies
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Two main flavors

Forward mode Reverse mode (a.k.a. backprop)

Nested combinations 
(higher-order derivatives, Hessian–vector products, etc.)

- Forward-on-reverse
- Reverse-on-forward
- ...

Primals
Derivatives

    Primals

Derivatives

Automatic differentiation

(Tangents)
(Adjoints)



Tools and communities



Two communities getting to know each other
Automatic differentiation Machine learning

Methods Theory of differentiation, adjoints, 
checkpointing, source transformation

Deep learning, differentiable programming, 
probability theory, Bayesian methods

Applications Scientific computing, engineering design, 
computational fluid dynamics, Earth sciences, 
computational finance

Virtually all recent machine learning 
applications, pattern recognition, 
representation learning

Languages C, C++, FORTRAN Python

Tools ADOL-C, ADIFOR, Tapenade, etc. PyTorch, TensorFlow, JAX, etc.

Community 1st international conference: 1991

http://www.autodiff.org/?module=Workshops 

1st autodiff workshop at NeurIPS: 2016

https://autodiff-workshop.github.io/ 

http://www.autodiff.org/?module=Workshops
https://autodiff-workshop.github.io/
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34Baydin, Atılım Güneş, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. 2018. “Automatic Differentiation in Machine 
Learning: a Survey.” Journal of Machine Learning Research (JMLR) 18 (153): 1–43. http://jmlr.org/papers/v18/17-468.html
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Automatic differentiation

Fuel ignition, supersonic flow in a rocket nozzle. Gifs: Jason Koebler, SpaceX

It is a (small) field of its own, 
with a dedicated community
http://www.autodiff.org/ 

Non-machine-learning applications in 
industry and academia
● Computational fluid dynamics
● Atmospheric sciences
● Computational finance
● Engineering design optimization

http://www.autodiff.org/
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Tools and community
International Conferences on AD

● 7th at Oxford, UK, 2016
● 6th at Fort Collins, US, 2012
● 5th at Bonn, Germany, 2008
● 4th at Chicago, US, 2004
● 3rd at Nizza, France, 2000
● 2nd at Santa Fe, US, 1996
● 1st at Breckenridge, US, 1991

European Workshops on AD

● 23rd, Virtual, Worldwide, 2020
● 22nd at London, UK, 2019
● 21st at Jena, Germany, 2018
● 20th at INRIA Sophia-Antipolis, France, 2017
● 19th at Kaiserslautern, Germany, 2016
● 18th at Paderborn, Germany, 2015
● 17th at Argonne, US, 2015
● 16th at Jena, Germany, 2014
● 15th at INRIA Sophia-Antipolos, France, 2014
● 14th at Oxford, UK, 2013

…
● 1st at Nice, France, 2005

http://www.autodiff.org/?module=Workshops 

http://www.autodiff.org/?module=Workshops


Differentiable programming in 
practice



Two main possibilities:

- Static computational graphs
Let the user define the graph as a data structure

- Dynamic computational graphs 
Construct the graph automatically 
(general-purpose automatic differentiation)
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Differentiable programming frameworks



Two main possibilities:

- Static computational graphs
Let the user define the graph as a data structure

- Dynamic computational graphs 
Construct the graph automatically 
(general-purpose automatic differentiation)
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Differentiable programming frameworks

“Define-and-run”

“Define-by-run”
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Graph compilation in 
Theano

Static graphs (define-and-run)
Prototypical examples: Theano, TensorFlow 1.0

- The user creates the graph using symbolic placeholders, using a 
mini-language (domain-specific language, DSL)

- Limited (and unintuitive) control flow and expressivity
- The graph gets “compiled” to take care of expression swell, in-place ops.
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Static graphs (define-and-run)
Prototypical examples: Theano, TensorFlow

Let’s implement
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Static graphs (define-and-run)
Prototypical examples: Theano, TensorFlow

Let’s implement

 Pure Python:
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Static graphs (define-and-run)
Prototypical examples: Theano, TensorFlow

Let’s implement

 Pure Python:
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Dynamic graphs (define-by-run)
Prototypical examples: PyTorch
General-purpose autodiff, usually via operator overloading

- The user writes regular programs in host programming language
All language features (including control flow) are supported

- The graph is automatically constructed
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Dynamic graphs (define-by-run)
Prototypical examples: PyTorch

Let’s implement

 



46

Dynamic graphs (define-by-run)
Prototypical examples: PyTorch

Let’s implement

 Pure Python:
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Dynamic graphs (define-by-run)
Prototypical examples: PyTorch

Let’s implement

 Pure Python:



Current state of differentiable 
programming



torch7
2011

torch-autograd
2015

PyTorch
2016

TensorFlow
2015

TensorFlow
eager exec
2017

TensorFlow 2
2019

theano
2008

HIPS autograd
2014

JAX
2018

From: coarse-grained (module level) backprop
Towards: fine-grained, general-purpose automatic differentiation

Evolution of frameworks



Design optimization
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Design optimization

Inputs Outputs

Simulator (model) of the system

Parameters

Optimal 
parameters

Objective Simulator



Can be efficiently found by gradient-based optimization if               is available

52

Design optimization

Inputs Outputs

Simulator (model) of the system

Parameters
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Surrogates for differentiability

Inputs Outputs

Non-differentiable simulator (model)

Parameters

● Run simulator many times
● Generate a (large) dataset of input - output pairs capturing simulator’s behavior
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Surrogates for differentiability

Inputs Outputs

Differentiable surrogate with 

Parameters

● Use the dataset to learn a differentiable approximation of the simulator 
(e.g., a deep generative model)
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Example: a simple surrogate
Tuning synthetic image generation for computer vision

Behl, Baydin, Gal, Torr, Vineet “AutoSimulate: (Quickly) Learning Synthetic Data Generation” ECCV 2020

Number or synthetic images required during 
training with photorealistic Arnold renderer
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Example: exoplanet radiative transfer

Himes, Harrington, Cobb, Baydin, Soboczenski, O'Beirne, Zorzan, Wright, Scheffer, Domagal-Goldman, Arney. 2020, October. Accelerating Bayesian Inference via Neural Networks: 
Application to Exoplanet Retrievals. In AAS/Division for Planetary Sciences Meeting Abstracts (Vol. 52, No. 6, pp. 207-07).

● Posterior probability distributions of exoplanet atmospheric parameters 
conditioned on observed spectra, using radiative transfer simulators

● Surrogates allow up to 180x faster inference
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Example: local generative surrogates

Shirobokov, Belavin, Kagan, Ustyuzhanin, Baydin “Black-Box Optimization with Local Generative Surrogates” NeurIPS 2020

● Deep generative surrogates (GAN) successively trained in local neighborhoods
● Optimize SHiP muon shield (GEANT4, FairRoot), minimize number of recorded 

muons by varying magnet geometry
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Example: universal probabilistic surrogates

Munk, Scibior, Baydin, Stewart, Fernlund, Poursartip, Wood “Deep Probabilistic Surrogate Networks for Universal Simulator 
Approximation” ProbProg 2020

Surrogate simulation of composite material 
heating cycles (25x faster inference)

● Replace a (slow) universal probabilistic program with a (fast) LSTM-based 
surrogate that works in the same address space

● Enables faster Bayesian inference
● Differentiable surrogate model can enable gradient-based inference engines
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Differentiability without surrogates

Inputs Outputs

Non-differentiable simulator (model)

Parameters
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Differentiability without surrogates

Inputs Outputs

Non-differentiable simulator (model)

Parameters

Inputs Outputs

Differentiable simulator with 

Parameters

Automatic differentiation 
(e.g., source-to-source transformation)
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Differentiability without surrogates

Forth, Shaun A.; Evans, Trevor P. Aerofoil Optimisation via AD of a Multigrid Cell-Vertex Euler Flow Solver. 2002

Daniele Casanova, Robin S. Sharp, Mark Final, Bruce Christianson, Pat Symonds. “Application of Automatic Differentiation to Race Car Performance 
Optimisation” in Automatic Differentiation of Algorithms: From Simulation to Optimization, Springer, 2002

● Use automatic differentiation tools to make the simulator directly differentiable
● Used in design optimization by the AD community for many decades
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End-to-end differentiable pipelines

Milutinovic, Baydin, Zinkov, Harvey, Song, Wood, Shen. 2017. “End-to-End Training of Differentiable Pipelines Across Machine Learning 
Frameworks.” NeurIPS 2017 Autodiff Workshop

● Complex experimental setups can be composed of a pipeline of a series of 
distinct simulators (e.g., SHERPA -> GEANT)

● One might need to differentiate through the whole end-to-end pipeline, which 
can be achieved by compositionality and the chain rule

DARPA Data Driven Discovery of 
Models (D3M)
https://datadrivendiscovery.org/ 

https://datadrivendiscovery.org/
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Differentiable programming in particle physics

Baydin, Cranmer, Feickert, Gray, Heinrich, Held, Melo, Neubauer, Pearkes, Simpson, Smith, Stark, Thais, Vassilev, Watts. 2020. 
“Differentiable Programming in High-Energy Physics.” In Snowmass 2021 Letters of Interest (LOI), Division of Particles and Fields (DPF), 
American Physical Society. https://snowmass21.org/loi.

● Differentiable analysis
Unify analysis pipeline by simultaneously 
optimizing the free parameters of an analysis 
with respect to the desired physics objective

● Differentiable simulation 
Enable efficient simulation-based inference, 
reducing the number of events needed by 
orders of magnitude
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Optimization of experimental design

Baydin, Cranmer, de Castro Manzano, Delaere, Derkach, Donini, Dorigo, Giammanco, Kieseler, Layer, Louppe, Ratnikov, Strong, Tosi, 
Ustyuzhanin, Vischia, Yarar. 2021. “Toward Machine Learning Optimization of Experimental Design.” Nuclear Physics News 31 (1)

● Design of instruments is a complex 
task, involving a combination of 
performance and cost 
considerations

● We need the next generation of 
tools to optimize modern and 
future particle detectors and 
experiments

● MODE (Machine-learning Optimized 
Design of Experiments) 
collaboration!
https://mode-collaboration.github.io/ 

https://mode-collaboration.github.io/


Summary
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Summary

● What is differentiable programming?
○ How to compute derivatives
○ Automatic differentiation
○ Tools and communities

● Differentiable programming in practice
○ Current state of differentiable programming

● Design optimization
○ Surrogates
○ Direct differentiation
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Thank you for listening
Questions?
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Forward vs reverse
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Derivatives in machine learning
“Backprop” and gradient descent are at the core of all recent advances 

Probabilistic programming and modeling

Pyro ProbTorch

Edward TensorFlow Probability 

- Variational inference
- “Neural” density estimation

- Transformed distributions via bijectors
- Normalizing flows (Rezende & Mohamed, 2015)
- Masked autoregressive flows (Papamakarios et al., 2017)

(2017) (2017)

(2016) (2018)

PyProb (2019)



DNC on binary number recall 
(Wikimedia Commons: Kjerish)
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AD is at the core of machine learning
A new mindset and workflow, enabling differentiable algorithmic elements
● Neural Turing Machine, Differentiable Neural Computer (Graves et al. 2014, 2016)

○ Can infer algorithms: copy, sort, recall
● Stack-augmented RNN (Joulin & Mikolov, 2015)
● End-to-end memory network (Sukhbaatar et al., 2015)
● Stack, queue, deque (Grefenstette et al., 2015)
● Discrete interfaces (Zaremba & Sutskever, 2015)

https://commons.wikimedia.org/wiki/User:Kjerish



