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GooglLeNet, Szegedy, et al 2014.



Crisis of ML theory

“Machine learning has become alchemy” (A. Rahimi, B. Recht,
NIPS 2017).

ML theory “looking for lost keys under a lamp post, because
that"s where the light 1s" (Y. Lecun, 2018).

P The street light effect
» Theory is our lamppost e AR
» But the keys to Al might be elsewhere | [



https://youtu.be/x7psGHgatGM?t=722
https://youtu.be/gG5NCkMerHU?t=3189

Yann Lecun: IPAM talk, 2018

Deep learning breaks some basic rules of statistics.

Leo Breiman
Statistics Department, University of California, Berkeley, CA 94305; o .
e-mail: leo@stat.berkeley.edu Written in 1995

Reflections After Refereeing Papers for NIPS

For instance, there are many important questions regarding neural networks
which are largely unanswered. There seem to be conflicting stories regarding the

following issues:

Why don’t heavily parameterized neural networks overfit the data?

What is the effective number of parameters?

Why doesn’t backpropagation head for a poor local minima?

When should one stop the backpropagation and use the current parameters?




Two key questions:

1. Generalization.

Why do neural networks generalize to unseen data?

2. Optimization.

Why can non-convex objective functions be optimized?



The Prism

"destroyed all the poetry of the rainbow, by reducing it to the prismatic colours." |. Keats

A prism allows analysis by separating a complex mixture of colors
into simpler individual components.



The problem of generalization

Input: data (x;,y;), i=1..n,x; € R% y; € {—1,1} (classification)

Goal: construct f*R? - R, that best ‘“generalizes” to new
data.

Under the standard statistical assumptions:

fr= argmfin Evnseen aata L(f (x),y)



Empirical Risk Minimization

Most algorithms (including neural networks) and
theoretical analyses for ML are based on ERM:

Empirical risk

1

oy = argmin —z L(f(x),v:)
fERM gfe}[ 1 Litraining data f(xi), yi

Minimize empirical risk over a class of functions H.

Key question — choice of H.



Classical U-shaped generalization curve
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The ERM/SRM theory of learning

Goal of ML: f* = argmfin Eonseen data L(F(x),y)

Goal of ERM: fgrzy = arg min Z

fo€H M Ztraining data L(fw (xi)' Yi)

1. The theory of induction is based on the|\uniform law of large numbers.
2. Effective methods of inference must include|capacity control.

V. Vapnik, Statistical Learning Theory, 1998



Uniform law of large numbers

Empirical loss of any f €H approximates expected loss of f.

n

1
Lemp(f) = _ztraining ota L(fw (%), yi) ~ Eunseen data L(f(x)» y)

Hence

'Cemp (ferm) = Eunseen data LUErm (%), y)



WYSIWYG Generalization bounds

WYSIWYG bounds vc-dim, fat shattering, Rademacher,

covering numbers, margin..

Classically VC-dimension

Expected risk: Empirical risk:
what you get what you see

ECLfrmy)) <~ ) L (firu (), y) +0° %



Capacity control

6.1 THE SCHEME OF THE STRUCTURAL RISK MINIMIZATION INDUCTION PRINCIPLE 223

A

Bound on the risk
Confidence interval

= Empirical risk
P

hy h* b h

FIGURE 6.2. The bound on the risk is the sum of the empirical risk and of the confidence
interval. The empirical risk is decreased with the index of element of the structure, while
the confidence interval is increased. The smallest bound of the risk is achieved on some
appropriate element of the structure.

V.Vapnik, Statistical Learning Theory, 1998



Data-dependent WYSIWYG bounds

Why do we need uniform laws of large

numbers, when most f € H are useless for
prediction?

1 X
ELFinny) S 9 L (an ), y) +0° (V %))

Margin and other “a posteriori” bounds
allow H and ¢ to be data-dependent.



Interpolation

f interpolates it V; f(x;) =y;

Test loss Training loss
E(L <11 L 0" \/E
(L), ) == 7 yi) + "
X N
o N0

WYSIWIG bounds imply interpolation should not
generalize.



Does i1nterpolation overfit?
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Y

Y
Y

@ oo

Figure 2.3. The estimate on the right seems to be more reasonable than the
estimate on the left, which interpolates the data.

Trevor Hastie
Robert Tibshirani
Jerome Friedman

The Elements of

However, a model with [zero training error|is overfit to the training
data and will typically generalize poorly.




Does i1nterpolation overfit?

model # params random crop weight decay train accuracy test accuracy
yes yes 100.0 89.05
: yes no 100.0 89.31
Inception 1,649,402 yes 100.0 26.03
no no 100.0 85.75

[CIFAR 10, from Understanding deep learning requires rethinking generalization, Zhang, et al, 2017]

Boosting the margin: I 998
A new explanation for the effectiveness of voting methods

Robert E. Schapire Yoav Freund Peter Bartlett Wee Sun Lee

Abstract.  One of the surprising recurring phenomena
observed in experiments with boosting is that the test error
of the generated hypothesis usually does not increase as its
size becomes very large, and often 1s observed to decrease
even after the training error reaches zero. In this paper, we

Suggestive, yet does not directly i1nvalidate WYSIWYG
bounds.



How to test model complexity?

Add label noise.

. N
' ‘

Model complexity grows necessary to fit data grows,
but Bayes opt. does not change!

Expect overfitting to become severe as model complexity
grows.



Interpolation does not overfit even for
very noisy data

All methods (except Bayes optimal) have zero training square loss.
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Bounds?

What kind of generalization bound could work here?
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Why bounds fail

correct useful
c(n)
0.7 < O — 1 <0.9 n — oo
\ n

1. The constant in O needs to be exact. There are
no bounds like that.

2. Conceptually, how would the quantity c(n)
“know” about the Bayes risk?

Recent work: [Nagarajan, Kolter, 19; Bartlett, Long 20]
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Interpolation 1s best practice for deep learning

From Ruslan Salakhutdinov’s tutorial (Simons Institute, 2017):

The best way to solve the problem from
practical standpoint 1s you burld a very big
system .. basically you want to make sure you
hit the zero training error.

Further tuning is needed for state-of-the-art results, but
already works well at this point.



Inceﬁtion

ResNet-50
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From Canziani, et al., 2017.




The “‘puzzle” of generalization

Interpolation does not appear to overfit
contrary to ML/statistical beliefs.

Yet the practice of deep learning 1Is arguably
closer to iInterpolation than to classical
settings.



New ““theory of iInduction” cannot be
pased on uniform laws of large
numbers with capacity control.

Can 1nterpolation generalize?



Interpolated k-NN schemes
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Theorem:

Weighted (interpolated) k-nn schemes with certain singular kernels
are consistent (converge to Bayes optimal) for classification iIn
any dimension.

Moreover, statistically (minimax) optimal for regression in any
dimension.

[B., Hsu, Mitra, NeuriPS 18], followup [B., Rakhlin, Tsybakov, AlStats 19]



A curious corollary

Figure 11: Raisin bread: The “raisins” are basins where the interpolating predictor
fint disagrees with the optimal predictor f*, surrounding “noisy” data points. The
union of basins is an everywhere dense set of zero measure (as n — 00).



Interpolation and adversarial examples

From Szegedy, at al, Intriguing properties of neural networks, ICLR 2014

Theorem: adversarial examples for interpolated
classifiers are asymptotically dense (assuming the
labels are not deterministic).

caveat emptor: possibly only one of the mechanisms.



This talk so far:

A. Interpolation empirically aligns with generalization.
B. Theory of interpolation cannot be based on uniform bounds.
c. Statistical validity of interpolating nearest neighbor methods.

There i1s a mismatch between A and C.

Methods we analyze have no complexity control/optimization,

Yet practical methods choose the largest technologically feasible
models.

Key questions for new theory: dependence of generalization on model
complexity.



Parametric families

ReLU Networks ReLU(x) = max(x,0),
Neural network with hidden layer of size d:

d
h(x) = 2 o ReLU(b;x + c))

Jj=1
Random RelLU features: bj, ¢ Ffixed chosen at random.

Trained by linear regression over q;:

1 = argmin Y (hax) — 90



Interpolation and over-parameterization
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Double descent risk curve

Classical risk curve

New “double descent” risk curve

under-fitting . over-fitt ing

. Test risk

under-parameterized

Test risk
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A ! regime interpolating regime
o o
\ 1 L]
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sweet spot\:" - =~ oo - .‘{intcrpo]ation threshold
Complexity of H Complexity of H

Two key points:

« The classical curve ends where modern ML starts.
« Very complex models can outperform “classical” models

[B.-, Hsu, Ma, Mandal, PNAS 2019]



Fully connected network

MNIST (n=4-10% d =784, K =10)

Random Forest

SVHN (n = 10,10 classes)

Advani,"Saxe” 2017
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Double descent 1n linear/Zkernel models

Interpolated linear models provide insights for DNN.

Some recent work on generalization in linear/kernel models:

[Bartlett, Long, Lugosi, Tsigler 19],
[Hastie, Montanari, Rosset, Tibshirani 19] [Mitra, 19],
[Muthukumar, Vodrahalli, Sahair, 19] [Mei, Montanari, 19}

[Liang, Rakhlin, 19], [Liang, Rakhlin, Zhai, 19] [Xu, Hsu, 19]
Choosing maximum number of features 1s

provably optimal under the “weak random
feature” model. [B., Hsu, Xu, 19].

Deep Neural RelLU networks = Laplace RKHS
[Chen, Xu, 20],[Bietti, Bach 20]}



ERM and Interpolation (linear)

Classical ERM:

1

ey = argmin —Z L(f(x),Vy;)
Jerm gfe}[ n training data J ),y

Modern ML/interpolation:

fne=arg min |If]]

Vi f(xi)=y;

Norm minimization hidden within the dynamics of SGD.
Looks like ERM superficially.



Framework for modern ML

Occam’s razor based on inductive bias:
Maximize smoothness subject to interpolating the data.

Three ways to Increase smoothness:

Explicit: minimum functional norm solutions
Exact: kernel machines.
Approximate: RFF, RelLU features.
Implicit: SGD/optimization (Neural networks)
Averaging (Bagging, L2-boost).

All coincide for kernel machines.

Interesting recent work: smoothness may require over-
parameterization in parametric families [Bubeck, Selke, 211}



The landscape of generalization

4+ Classical Overfitting
Loss | wysiwya

bounds apply.

Modern ML. Interpolation
regime. Based on
inductive biases/functional
smoothness. Some
analyses are now available.

Test loss

. \\
Train loss [~ ~

X Interpolation # parameters
threshold



Key question

Why 1s SGD so successful 1n optimizing highly non-
Iinear neural networks?

Traditional view:

tractable optimization = (local) convexity



Learning as solving a system of equations

Fitting data = solving a system of non-
linear equations f,(x;) = y;:

Fw)=y, F:R™>R"

Equivalent to minimizing (square loss)

L(w) = [[F(w) — y]|*



Under and over-parameterization

Local minima Global minima

Classical underparameterized Overparameterized landscape m >n:
landscape m < n:

Manifolds of global minima
Isolated local minima



Essential non-convexity

Global minima

“Theorem”: Landscapes of over-parameterized systems are never
convex, even locally.

Proof: If L(w) is locally convex, the manifold of minima cannot
have curvature (must be a line segment).



Theory of optimization for over-
parameterized systems cannot be based
on (local) convexity.



From convexity to PL

Polyak-Lojasiewicz (PL) condition (1963)
[IVLW)||? = u (L(w) — L(w™))
+ First order.

+ Guarantees convergence of GD.
+ Invarirant under “nice” transformations of w.



Modern and classical models

| “Modern” model. *’
I .

Not locally convex landscape.
All minima are global.
Satisfies PL* condition

Loss

+ good generalization!

Classical model.
Many non-global minima.
Complexity control.

———————#
>

# parameters

b— interpolation




Collaborators:

Chaoyue Liu, Ohio State University->
Facebook

Siyuan Ma, OSU -> Google
Soumik Mandal, Ohio State University
Libin Zhu, UCSD

Raef Bassily, Ohio State University
Daniel Hsu, Columbia University
Partha Mitra, Spring Harbor Labs
Sasha Rakhlin, MIT

Sasha Tsybakov, ENSAE

Thank you
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