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Based on

Fit without fear: remarkable mathematical phenomena 
of deep learning through the prism of interpolation 

(Acta Numerica 2021, arxiv: 2105.14368 )



GoogLeNet, Szegedy, et al 2014.



Crisis of ML theory

“Machine learning has become alchemy” (A. Rahimi, B. Recht, 
NIPS 2017). https://youtu.be/x7psGHgatGM?t=722

ML theory “looking for lost keys under a lamp post, because 
that's where the light is" (Y. Lecun, 2018). 
https://youtu.be/gG5NCkMerHU?t=3189

https://youtu.be/x7psGHgatGM?t=722
https://youtu.be/gG5NCkMerHU?t=3189


Yann Lecun: 

Deep learning breaks some basic rules of statistics.

Written in 1995

IPAM talk, 2018



Two key questions:

1. Generalization.

Why do neural networks generalize to unseen data?

2. Optimization.

Why can non-convex objective functions be optimized?



The Prism 

"destroyed all the poetry of the rainbow, by reducing it to the prismatic colours.'"  J. Keats 

A prism allows analysis by separating a complex mixture of colors 
into simpler individual components. 



The problem of generalization

Input: data 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1. .𝑛𝑛 , 𝑥𝑥𝑖𝑖 ∈ ℝ𝑑𝑑 ,𝑦𝑦𝑖𝑖 ∈ −1,1 (classification)

Goal: construct 𝑓𝑓∗:ℝ𝑑𝑑 → ℝ, that best “generalizes” to new 
data.

Under the standard statistical assumptions:

𝑓𝑓∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑓𝑓

𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐿𝐿 𝑓𝑓 𝑥𝑥 ,𝑦𝑦



Empirical Risk Minimization

Most algorithms (including neural networks) and 
theoretical analyses for ML are based on ERM:

𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑓𝑓∈ℋ

1
𝑛𝑛
�

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝐿𝐿 𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖

Minimize empirical risk over a class of functions ℋ.

Key question – choice of ℋ.  

Empirical risk



Classical U-shaped generalization curve

Overfitting

Goal:  “Sweet 
spot”

Underfitting



Goal of ML: 𝑓𝑓∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑓𝑓

𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐿𝐿 𝑓𝑓 𝑥𝑥 , 𝑦𝑦

Goal of ERM: 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑓𝑓𝑤𝑤∈ℋ

1
𝑛𝑛
∑𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐿𝐿 𝑓𝑓𝑤𝑤(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖

…

The ERM/SRM theory of learning 

V. Vapnik, Statistical Learning Theory, 1998



Empirical loss of any 𝑓𝑓 ∈ ℋ approximates expected loss of 𝑓𝑓.

ℒ𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓 =
1
𝑛𝑛�𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝐿𝐿 𝑓𝑓𝑤𝑤(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖 ≈ 𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐿𝐿 𝑓𝑓 𝑥𝑥 ,𝑦𝑦

Hence 

ℒ𝑒𝑒𝑒𝑒𝑒𝑒(𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸∗ ) ≈ 𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐿𝐿 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸∗ 𝑥𝑥 ,𝑦𝑦

Uniform law of large numbers



WYSIWYG Generalization bounds

WYSIWYG bounds VC-dim, fat shattering, Rademacher, 

covering numbers, margin…

𝐸𝐸(𝐿𝐿(𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸∗ ,𝑦𝑦)) ≤
1
𝑛𝑛�

𝐿𝐿 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸∗ 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 + 𝑂𝑂∗
𝑐𝑐
𝑛𝑛

Classically VC-dimension

Empirical risk: 
what you see

Expected risk: 
what you get



Capacity control

…

V. Vapnik, Statistical Learning Theory, 1998



Data-dependent WYSIWYG bounds

Why do we need uniform laws of large 
numbers, when most 𝑓𝑓 ∈ ℋ are useless for 
prediction? 

𝐸𝐸(𝐿𝐿(𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸∗ ,𝑦𝑦)) ≤
1
𝑛𝑛
�𝐿𝐿 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸∗ 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 + 𝑂𝑂∗

𝑐𝑐(𝑋𝑋)
𝑛𝑛

Margin and other “a posteriori” bounds 
allow ℋ and 𝑐𝑐 to be data-dependent. 



Interpolation

𝑓𝑓 interpolates if ∀𝑖𝑖 𝑓𝑓 𝑥𝑥𝑖𝑖 = 𝑦𝑦𝑖𝑖

Test loss          Training loss

𝐸𝐸 𝐿𝐿 𝑓𝑓 𝑥𝑥 ,𝑦𝑦 ≤
1
𝑛𝑛�

𝐿𝐿 𝑓𝑓 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 + 𝑂𝑂∗
𝑐𝑐
𝑛𝑛

WYSIWIG bounds imply interpolation should not 
generalize.



Does interpolation overfit?



Does interpolation overfit?

[CIFAR 10, from Understanding deep learning requires rethinking generalization, Zhang, et al, 2017]

Suggestive, yet does not directly invalidate WYSIWYG 
bounds.

1998



Add label noise. 

Model complexity grows necessary to fit data grows, 
but Bayes opt. does not change!

Expect overfitting to become severe as model complexity 
grows. 

How to test model complexity?



Interpolation does not overfit even for 
very noisy data

Laplace kernel
𝑒𝑒−||𝑥𝑥−𝑧𝑧||/𝜎𝜎

Gauss kernel

Neural net

[B., Ma, Mandal, ICML 18]  

All methods (except Bayes optimal) have zero training square loss. 
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Bounds?

Best possible

Random

Laplace kernel

What kind of generalization bound could work here?

0.7 < 𝑂𝑂∗ 𝑐𝑐(𝑛𝑛)
𝑛𝑛

< 0.9
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Why bounds fail

0.7 < 𝑂𝑂∗
𝑐𝑐(𝑛𝑛)
𝑛𝑛

< 0.9 𝑛𝑛 → ∞

1. The constant in 𝑂𝑂∗needs to be exact. There are 
no bounds like that. 

2. Conceptually, how would the quantity 𝑐𝑐 𝑛𝑛
“know” about the Bayes risk?

correct useful

Recent work: [Nagarajan, Kolter, 19; Bartlett, Long 20]





~
~ ~

~

SGD epochs (model complexity)

Interpolation: train error (~10−27)

Interpolation test error

SGD test error

SGD train error



Interpolation is best practice for deep learning

From Ruslan Salakhutdinov’s tutorial (Simons Institute, 2017): 

The best way to solve the problem from 
practical standpoint is you build a very big 
system … basically you want to make sure you 
hit the zero training error.

Further tuning is needed for state-of-the-art results, but 
already works well at this point.



Large models

GP T3, 2020 
175 billion parameters

From Canziani, et al., 2017. 

Switch Transformer, 2021:
1.6 trillion parameters



The “puzzle” of generalization

Interpolation does not appear to overfit
contrary to ML/statistical beliefs. 

Yet the practice of deep learning is arguably 
closer to interpolation than to classical 
settings.  



New “theory of induction” cannot be 
based on uniform laws of large 
numbers with capacity control.

Can interpolation generalize?



Interpolated k-NN schemes

𝑓𝑓(𝑥𝑥) = ∑ 𝑦𝑦𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖,𝑥𝑥)
∑𝑘𝑘 𝑥𝑥𝑖𝑖,𝑥𝑥

𝑘𝑘 𝑥𝑥𝑖𝑖 , 𝑥𝑥 = 1
||𝑥𝑥−𝑥𝑥𝑖𝑖||𝛼𝛼

, 𝑘𝑘 𝑥𝑥𝑖𝑖 , 𝑥𝑥 = − log ||𝑥𝑥 − 𝑥𝑥𝑖𝑖||

(cf. Shepard’s interpolation)

Theorem:

Weighted (interpolated) k-nn schemes  with certain singular kernels 
are consistent (converge  to Bayes optimal) for classification in 
any dimension.

Moreover, statistically (minimax)  optimal for regression in any
dimension.

[B., Hsu, Mitra, NeuriPS 18], followup [B., Rakhlin, Tsybakov, AIStats 19]



A curious corollary



Theorem: adversarial examples for interpolated 
classifiers are asymptotically dense (assuming the 
labels are not deterministic).

caveat emptor: possibly only one of the mechanisms.

Interpolation and adversarial examples

From Szegedy, at al, Intriguing properties of neural networks, ICLR 2014

Ostrich
Dog

+ invisible noise



This talk so far:

A. Interpolation empirically aligns with generalization. 

B. Theory of interpolation cannot be based on uniform bounds. 

C. Statistical validity of interpolating nearest neighbor methods.

There is a mismatch between A and C. 

Methods we analyze have no complexity control/optimization,

Yet practical methods choose the largest technologically feasible 
models. 

Key questions for new theory: dependence of generalization on model 
complexity.



Parametric families

ReLU Networks 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑥𝑥 = max 𝑥𝑥, 0 , 

Neural network with hidden layer of size 𝑑𝑑:

ℎ𝑑𝑑(𝑥𝑥) = �
𝑗𝑗=1

𝑑𝑑
𝛼𝛼𝑗𝑗 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑏𝑏𝑗𝑗𝑥𝑥 + 𝑐𝑐𝑗𝑗)

Random ReLU features: 𝑏𝑏𝑗𝑗 , 𝑐𝑐𝑗𝑗 fixed chosen at random. 

Trained by linear regression over 𝛼𝛼𝑗𝑗 :

ℎ𝑑𝑑∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝛼𝛼

�(ℎ𝑑𝑑 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2



Interpolation and over-parameterization



Double descent risk curve

Classical risk curve New “double descent” risk curve

[B., Hsu, Ma, Mandal, PNAS 2019] 

Two key points:

• The classical curve ends where modern ML starts.
• Very complex models can outperform “classical” models



Fully connected network Random Forest L2-boost

[B., Hsu, Ma, Mandal, 18] 

Spigler, et al, 2018Advani, Saxe, 2017

Random ReLU
network RFF network 

1D simulated data

Nakkiran, et al, ICLR 2020



Double descent in linear/kernel models

Choosing maximum number of features is 
provably optimal under the “weak random 
feature” model. [B., Hsu, Xu, 19]. 

Interpolated linear models provide insights for DNN.

Some recent work on generalization in linear/kernel models: 

[Bartlett, Long, Lugosi, Tsigler 19],  
[Hastie, Montanari, Rosset, Tibshirani 19] [Mitra, 19], 
[Muthukumar, Vodrahalli, Sahai, 19] [Mei, Montanari, 19] 
[Liang, Rakhlin, 19], [Liang, Rakhlin, Zhai, 19] [Xu, Hsu, 19]

Deep Neural ReLU networks = Laplace RKHS 
[Chen, Xu, 20],[Bietti, Bach 20] 



ERM and Interpolation (linear)

Classical ERM:

𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑓𝑓∈ℋ

1
𝑛𝑛
�

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝐿𝐿 𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖

Modern ML/interpolation:

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖∗ = 𝑎𝑎𝑎𝑎𝑎𝑎 min
𝑓𝑓∈ℋ

∀𝑖𝑖 𝑓𝑓 𝑥𝑥𝑖𝑖 =𝑦𝑦𝑖𝑖

||𝑓𝑓||

Norm minimization hidden within the dynamics of SGD.  

Looks like ERM superficially.



Framework for modern ML

Occam’s razor based on inductive bias:   

Maximize smoothness subject to interpolating the data. 

Three ways to increase smoothness:

 Explicit: minimum functional norm solutions 

 Exact: kernel machines.

 Approximate: RFF, ReLU features. 

 Implicit: SGD/optimization (Neural networks)

 Averaging (Bagging, L2-boost).

All coincide for kernel machines.

Interesting recent work: smoothness may require  over-
parameterization in parametric families [Bubeck, Selke, 21]



Modern ML. Interpolation 
regime.  Based on 
inductive biases/functional 
smoothness. Some 
analyses are now available. 

# parameters

Loss
Overfitting
.

Test lossTrain loss

Classical 
WYSIWYG
bounds apply.

The landscape of generalization

Interpolation 
threshold



Key question

Why is SGD so successful in optimizing highly non-
linear neural networks? 

Traditional view:   

tractable optimization = (local) convexity



Learning as solving a system of equations

Fitting data = solving a system of non-
linear equations 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 ≈ 𝑦𝑦𝑖𝑖:

𝐹𝐹 𝑤𝑤 = 𝑦𝑦, 𝐹𝐹:ℝ𝑚𝑚 → ℝ𝑛𝑛

Equivalent to minimizing (square loss)

𝐿𝐿 w = ||𝐹𝐹 𝑤𝑤 − 𝑦𝑦||2



Under and over-parameterization

Classical underparameterized
landscape 𝑚𝑚 ≤ 𝑛𝑛:

Isolated local minima

Overparameterized landscape 𝑚𝑚 > 𝑛𝑛 :

Manifolds of global minima



Essential non-convexity

“Theorem”: Landscapes of over-parameterized systems are never 
convex, even locally. 

Proof: If 𝐿𝐿 w is locally convex, the manifold of minima cannot 
have curvature (must be a line segment). 



Theory of optimization for over-
parameterized systems cannot be based

on (local) convexity.



From convexity to PL

Polyak-Lojasiewicz (PL) condition (1963)

||𝛻𝛻𝐿𝐿 𝑤𝑤 ||2 ≥ 𝜇𝜇 (𝐿𝐿 𝑤𝑤 − 𝐿𝐿(𝑤𝑤∗))

+ First order. 
+ Guarantees convergence of GD. 
+ Invariant under “nice” transformations of 𝑤𝑤.



interpolation

Loss

“Modern” model.

Not locally convex landscape.
All minima are global. 
Satisfies PL* condition

+ good generalization!

Modern and classical models

Classical model. 
Many non-global minima.
Complexity control. 

# parameters



Chaoyue Liu, Ohio State University-> 
Facebook
Siyuan Ma, OSU -> Google
Soumik Mandal, Ohio State University
Libin Zhu, UCSD

Raef Bassily, Ohio State University
Daniel Hsu, Columbia University
Partha Mitra, Spring Harbor Labs
Sasha Rakhlin, MIT
Sasha Tsybakov, ENSAE

Collaborators:

Thank you
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