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I. Motivation: Volcanic Hazards

e More than 500 volcanoes confirmed historical eruptions (69 volcanoes erupted in 2021)

e Approx. 10 % of Earth's population live around volcanoes

e Volcanic hazards can cause serious socioeconomic loss:
- syn-eruptive hazards: bombs, tephra fall, pyroclastic flows, etc
- post-eruptive hazards: lahars, debris avalanche, etc
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Most volcano hazards are associated
h X with eruptions. However, some
Source: https://worldinmaps.com/wp-content/uploads/2020/05/volcano-world-map.jpg hazards, such as lahars and debris
avalanches, can occur even when a
volcano is not erupting.
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Video recording

Source: https://doi.org/10.1016/j.gsf.2020.01.016
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I. Motivation:
Volcano Monitoring
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I. Motivation:
Machine Learning (ML) of Volcanic Signals

 Convolutional Neural Networks for classification of volcanic deformation

Input 2D Layer (224x224)

Output 1D Layer

2D Convolutional Layers Linear Layers
Source: https://doi.org/10.1029/2018JB015911

 Bayesian Event Trees for long-term eruption forecasting
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unrest magma eruption vent size/style
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Source: https://doi.org/10.1007/s00445-009-0311-9

« Goal: real-time eruption forecasting by ML of remote sensing data
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I1. Muography of Sakurajima Volcano
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Cosmic-ray Muography

e Muography: a non-invasive remote sensing technique that is based on the measurement
of the flux of cosmic-ray muons that penetrated through the investigated structure

» Versatile applicability: volcanology, nuclear security, civil engineering, archeology, etc.
« High imaging resolution: (even a few meter segmented) images of volcanoes can be captured

« High penetration power: accessibility to the shallow parts of volcanoes located beneath crater floors

X-ray radiography: — few m Muography: few m — few km Neutrino radiography: ~ few 1000 km
W.C. Rontgen: H. Tanaka et al.: EPL 263 (2007) 104 ICECUBE: doi:10.1038/nature24459
On a new kind of rays, 1895
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The Sakurajima Volcano, Kyushu, Japan

Sakurajima volcano is an active stratovolcano on the "Ring of fire" within the Aira caldera in Kagoshima Bay

Latest plinian eruption occurred in 1914 — Next plinian eruption is expected in 25 years
https://doi.org/10.1038/srep32691

Two craters of the southern peak (the connected Vents A and B, as well as Showa crater) erupted consecutively in
the recent years — A few hundreds of (explosive) short-term eruptions per year

Short-term eruptions eject aerosols and gas with a bulk volume of below 107 m3 to a height of 1000-5000 meter
above the crater rims, throwing fragments of volcanic plug and lava bombs usually within approx. 3000 m radius

Protection of tourists motivates the forecasting of short-term eruptions of the Sakurajima volcano

AT

AN B S e Source: Kimon Berlin, CC BY-SA 2.0
Source: Wikipedia

Source: https://doi.org/10.1038/s41598-018-21423-9
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The Sakurajima Muography Observatory (SMO)

Multi-Wire Proportional Chamber (MWPC)-based Muography Observation System (MMOS)

2-dimensional muon localization by gaseous detectors
https://doi.org/10.1155/2016/1962317
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I11. Data Reconstruction and Analysis
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I11. Data Reconstruction and Analysis

Event-by-event offline track reconstruction
(slopes in 1+1 dim and y2/n.d.f.) was applied
independently for each MMOS module

Pre-analysis was applied for alignment of
detector layers and exclusion of noisy or
malfunctioned electronics channels

Track selection was based on x2/n.d.f.
See more at https://doi.org/10.1038/s41598-018-21423-9
GEANT4-based detector simulations were

applied to set energy cuts of muons to approx.
1 GeV that corresponded to x?/n.d.f. < 1.5

Directions of different MMOS modules were
oriented to the reference direction that was
30.25° from North and horizontal

Muon fluxes were weighted with the inverse

of their relative errors, and thereafter averaged

See more at https://doi.org/10.1029/2019GL.084784
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Preparation to Supervised Machine Learning

Muographic image resolution:

e Daily muograms were determined for 23 mrad x 23 mrad — 60 m x 60 M

period from October 2018 to June 2020
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IV. Eruption Forecasting by Machine Learning
of Muographic Data

This study applied the concept that was developed by Nomura et al. for forecasing of the eruptions of Showa crater
and achieved a ROC AUC of 0.726 (https://doi.org/10.1038/s41598-020-62342-y) using the data collected with two
scintillator-based tracking systems (https://www.nature.com/articles/s41598-020-71902-1) between 2014 and 2016.

1 Jan 2 Jan 3 Jan 4 Jan 5 Jan 6 Jan 7 Jan 8 Jan 9 Jan
0:00:00 0:00:00 O:O{IJ:CID U:D?:UD 0:00:00 0:09:00 D:D?:DU G:G?:GG U:DEJ:DO

prediction day

input data (7 muograms)

The data collected by the MWPC-based tracking system for forecasting the eruptions of Minamidake crater
were organized as follows.

Training data: 394 days with 146 eruption days (only Minamidake erupted)
Validation data: 110 days with 48 eruption days (only Minamidake erupted)
Test data: 109 days with 56 eruption days (only Minamidake erupted)

Applied Software: scikit-learn version 0.22.1, Keras version 2.4.3 and Tensorflow version 2.3.0

Receiver Operating Characteristic (ROC) analysis was applied to determine eruption forecasting performances

L. Olah 1st MODE WS 2021 15
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Learning of Average Flux Values with
Support Vector Machine

Relative flux values were averaged for 16 turns: an increase above 2.5 sigma was observed 1

day before eruption hints the explosion of volcanic plug beneath Minamidake before eruption

Support Vector machine with radial basis kernel (C and y parameters) was trained

with the average flux values and eruption labels from training data set

Parameters were selected based on their cross-validation score: C=925.827 and y=1.74564
Results of Reciever Operating Characteristic (ROC) analysis using test data set:

Moderate accurracy of 0.6 - SVM (and other ML models, e.g. ANN) can not capture the patterns
created by uprision magma or plug explosion before the occurrence of volcano eruption
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Learning of Muographic Images
with Convolutional Neural Network

» Application of a series of convolutional layers allows to reveal the hidden features of images on layer-by-layer
basis, and fully-connected neurons can process the extracted features to predict the eruptions.

A fix filter size of 3x3 was used in this analysis.

* CNN was trained using Adam method.

» The hyperparameters of the CNN model were tuned with Bayesian optimization and selected by ROC analysis.
The Number of epochs was found to be 100 and number of early patience was found to be 10.

Output

Input: 7 muograms Convolutional Layers FC Layer Layer

— -~ A
Lot O ‘ Region Minamidake ~ Showa  Surface ‘
2 O,
I l ) ‘-‘ Convolutional Layers 2 2 3
] O (‘) Filters on 1st Conv. Layer 16 64 8
o Filters on 2nd Conv. Layer 64 32 8
L]l O ':' Filters on 3rd Conv. Layer - - 4
OX Neurons on FC Layer 32 128 32
T O T Dropout 0215 0313 0332
Batch Size 16 8 32
I/ V l Learning Rate 0.000448  0.002749  0.00002
ReLU ReLU RelU RelLU ReLU  Sigmoid DeC&y Rate 0.926 0.99 0.981
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Learning of Muographic Images
with Convolutional Neural Network

* Application of a series of convolutional layers allows to reveal the hidden features of images on layer-by-layer basis,
and fully-connected neurons can process the extracted features to predict the eruptions.
A fix filter size of 3x3 was used in this analysis.

* CNN was trained using Adam method.

» The hyperparameters of the CNN model were tuned with Bayesian optimization and selected by ROC analysis. The
optimal number of epochs was found to be 100 and number of early patience was found to be 10.

* Results of ROC analysis showed that CNN achieved a fair AUC of 0.761 in Minamidake from the eruptions occurred
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Specificity 0.755 0.714 0.896 0.8 L )
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V. Summary and Discussion

* GOAL: Volcano eruption forecasting with machine learning of volcanic signals

*  Muography allows continuous remote monitoring of volcanoes and
can complement standard techniques

* Convolutional Neural Networks could capture hidden features of muographic images
and achieved a fair AUC score of 0.761

* Comparison to the results of Nomura et al. (forecasting of Showa's eruptions with ROC AUC of 0.726) and this work (forecasting of Mindamidake's
eruptions with ROC AUC of 0.761): Despite the application of upgraded muography obsrevation system with enlarged (5 sqm — 8 sqm) sensitive surface
area and higher angular resolution (33 mrad - 23 mrad), the forecasting performance was not drastically improved probably due to the following reasons:

* smaller number of eruptions occurred in Minamidake (832) than in Showa (1432) that resulted in smaller amount of training data,
* smaller amount of mass was transportated beneath the Minamidake than Showa that resulted in smaller variations in muographic images,

» the geometrical difference between the two craters is also assumed to be an influencing factor.

The presented study will published in a chapter

TODO: (https://doi.org/10.1002/9781119722748.ch4)
e Recurrent Neural Network with LOHg—ShOFt Term Memory in the bq0k ISBN 9781119723028 GEOPHYSICAL MONOGRAPH SERIES
is expected to improve forecasting by L. Olah and H. K. M. Tanaka Muography

Exploring Earth's Subsurface with
Elementary Particles

* Integration of muographic data with Contact information:

other remote sensing data Laszl6 Olah
* CNN works as a black box function 0|ah-|aS_Z|0@ngne|’-hU o
- Interpretable machine learning olah@virtual-muography-institute.org
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Magmatic Plug Formation Imaged With Muography

®) Eruptions of Showa Crater
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Gas System of MMOS

» Detector operation is provided by continuous flow of non-flammable,
non-toxic Ar-CO, gas mixture with a flow of 2 Liters/hour

« 3-5 months continuous operation by a cluster of gas bottles
(a volume of 40 Liters at a pressure of 140 bars each)

Nucl. Instrum. and Meth. A L. Oldh 1st MODE WS 2021 22
https://doi.org/10.1016/j.nima.2019.05.077



I11. Automated Muographic Visualization Framework
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