

Muography in the industry

- * Muography is a new Non-Destructive Testing (NDT) technique that might be exploited in the industry
 - Preventive maintenance of equipment (estimation of the degradation)
 - Quality control of the production process (measurement of liquid interfaces, tolerances, etc)
 - Risk assessment and evaluation (continuous monitoring of structural integrity)
- * Large variety of different problems and issues in the industry but some general common points:
 - Relatively large and dense objects (from ~ 50 cm to several meters, iron, steel, etc)
 - In most cases not possible to have any physical access to the object when the factory is in production
 - Relatively harsh environment in terms of dust, temperature and space or time restrictions
- * Muography has some unique properties that can be very useful for these applications
 - Large power of penetration (no problem to deal with several meters of steel)
 - No need to physically "touch" the object → it can be applied while the equipment is in production
 - Allows a continuous monitoring of several (typically large structures)
 - Very helpful to detect sudden changes in the production process or anomalies in the equipment

One example: ladle furnace

- > To illustrate some of these common features let's consider the problem of the ladle furnace
- A ladle furnace is a refractary + steel object with 1-2 meters of diameter used to transport melted mixes
- > Problem: opaque layer of slag of a few cm appears and doesn't allow to see the level of mineral
 - Need to estimate the position of the slag-mineral interface to know the amount of mineral in the ladle

Problem specifications:

Surface of the structure very hot → touching not possible

Temperature in the surrounding of about 60 degrees Celsius

Measurement has to be fast → of the order of 5 minutes

Target resolution in the interface position of about 1 cm

Difficulties to place the detectores in the right position

Added value:

Estimation of the amount of mix in the ladle → savings

Disruptive: this problem is not currently solved

Industrial problems: reduced complexity

- * There is one interesting point to be highlighted for most industrial problems
 - * The nominal geometry and composition of the equipment/problem is usually very well known
 - Only small variations with respect to the nominal position are targetted
 - * This allows to reduce the complexity of the problem to only a (small) set of parameters
- * This fact opens the possibility to exploit parameter inference and/or simple IA-based methods
 - No need to "reconstruct" the object, enough to model the possible variations

Ladle furnace: parameter of interest is the position of the slag-mineral interface

Degradation of pipes: parameter(s) of interest is the thickness of the pipe

Can use the average thickness of the wall, or the model can be made more complex by using a polygon fitting the inner surface of the pipe

Another example: Electric arc furnaces

- * Consider the example of the stability and efficiency of an electric arc furnace in foundries
- * Many factories have issues estimating the exact position of the electrodes in the mixture
 - * They suspect that small oscillations of the electrodes are responsible for efficiency losses
 - * A precise knowledge (~cm) of this position would allow to correct for the effect

Regression for geometry characterization (I)

- * Built a GEANT4-based model of a furnace with different values for the position of the electrodes
- * Artificial Neural Network performing regression on the position of the edge of the electrode in the mix
- * ANN using as input data the n-quantiles (+min and max) of the angular scattering distributions

Regression for geometry characterization (II)

- Simulations performed for 21 different positions of the electrode H in the range [16cm, 50cm]
- A total of 10 simulations is performed per point with a total of 1 hour exposition each

Yery poor discrimination achieved using this method → looking for alternatives

What about the energy?

- Results in the previous study not encouraging → need to find new information for the system
- [>] One obvious possibility is to provide the energy of the muons although this quantity is hard to measure
- A DNN in regression mode can be used one more time to extrapolate the energy with a proper setup
- * The idea is to extend the second muon detector with additional layers with known-width lead layers
- A DNN is trained using the angular distributions as input and regressing to the energy of the muon

Additional variables + data augmentation

- * Aim to to add the information of other variables: position and energy*
- [>] Data augmentation performed defining cross product variables: angle x energy, angle x position, etc
- Quantiles of all distributions are computed and given as input to the DNN

* Encouraging results, a resolution of about 4 cm is achieved (more than acceptable for the problem)

Another example: insulated pipe thickness

- [>] Oil and gas pipes in petrol refinement plants suffer from wear and degradation due to the flow
- → The radius of the pipes can range from ~ 10 cm to more than 1 metre.
- [>] All pipes have to be inspected with a certain periodicity to assess the thickness of the walls
- * Factories usually have several kilometres of pipes so the inspection has to be quick (~minutes)
- > In many occasions pipes are themally insulated to prevent from heat loses during transportation
 - The insulation covers make the application of acustical or electric NDT a hard task
 - * They are usually made of rock wool a very low density material

Likelihood-based thickness measurement (I) F(A

- Since the number of parameters is relatively small a likelihood-based parameter estimation can be tried
- * Even if very time consuming the observable distributions can be simulated and used in a likelihood

Likelihood-based thickness measurement (II) F (A

The problem of simulation (and how IA helps)

- * The previous method heavily relies on simulation to generate the distributions
- * This is a problem (as usual) because of two reasons:
 - Need to quickly produce all this simulation
 - * The simulation must be reliable, including also the detector-measurement process
- Generative adversarial neural networks can be used in order to achieve this goal

Generative Adversarial Neural Networks

- * Technical coordinates: Tensorflow running on GPU RTX Ge-force 3090
- \rightarrow Feature space: the x, y, v_x , v_y of the first detector + the difference with respect to second detector
 - > The initial distribution of the tracks should be the one associated to cosmic muons
 - However it also contains information about the detection process (so the variables are kept)
- * Two approaches being studied: classic one and Wasserstein (no large difference observed)
- So far not achieving a full equilibrium of generator and discriminator

Training with 200 Kevents of full GEANT4 simulation

Best convergence found at epoch ~ 100

Relative capacities of generator and discriminator models being explored

Work is ongoing...

Switch to images: traditional methods + CNN

- * The output of traditional methods like POCA can also be used with Convolution Neural Networks
- * The ideas is one more time the same: have the CNN working in regression mode
- * In this example: 10 30-minute-exposure-time images for several thicknesses of the wall are used
- * The CNN achieves a resolution of about 2 mm on the thickness of the pipes

Conclusions

- * Industry is a great consumer of NDT techniques where Muography could have a significant place
 - It allows to perform inspection of large and dense structures
 - It allows to perform the inspection while the facility is in production (online monitoring as well)
- * The nature of industrial problems differs from other Muography applications
 - Geometries are almost known → large reduction of parameters
- Modern Deep Learning techniques can be exploited in this context of which I highlight:
 - ANNs in regression mode for several cases and applications
 - GANs in order to produce fast and reliable simulation to be used with parameter inference models
 - Combination of traditional reconstruction methods with Convolutional neural networks
- Lots of work ahead!

