# Optimization of Optical and Radio Detectors for high-energy Neutrinos

**Christian Glaser** 



UPPSALA UNIVERSITET

## The High Energy Universe

- Cosmic rays gets accelerated up to 10<sup>20</sup>eV
- Cosmic rays produce neutrinos (at the source + GZK: CR+CMB)

cosmic ray

Neutrinos: Excellent messenger particle

neutrin

Electrically neutral, (almost) no mass, small interaction cross section

#### **Experimental challenge:**

small flux + low cross section

-> huge detector volumes needed

#### IceCube Neutrino Observatory



1 km<sup>3</sup> of ice instrumented with optical modules

#### IceCube Neutrino Observatory

- 1 km<sup>3</sup> of ice instrumented with optical modules
- Major breakthroughs
  - discovery of astrophysical neutrino flux
  - indication for sources of neutrinos
  - observation of Glashow resonance
- Goals for a next generation instrument:
  - Statistically significant observations over a broad energy range
  - Better pointing for point source localization and multi-messenger observations → improved angular resolution
  - → IceCube-Gen2



#### IceCube Neutrino Observatory

- 1 km<sup>3</sup> of ice instrumented with optical modules
- Major breakthroughs
  - discovery of astrophysical neutrino flux
  - indication for sources of neutrinos
  - observation of Glashow resonance
- Goals for a next generation instrument:
  - Statistically significant observations over a broad energy range
  - Better pointing for point source localization and multi-messenger observations → improved angular resolution
  - → IceCube-Gen2



#### IceCube-Gen2

Four new elements, leveraging complimentary technologies, to achieve sensitivity to MeV-EeV neutrinos

- 1. IceCube Upgrade
- 2. Enlarged deep optical array
- 3. Surface Array
- 4. Shallow radio array
  - expands energy reach to EeV energies



#### IceCube-Gen2



What is the optimal detector for the next decade?

Christian Glaser

Slides from Brian Clark, ICRC2021

## **Optimization of Optical Detector**

#### Parameters to optimize

- String locations
  - String spacing
  - Layout (grid, sunflower, other?)
- Optical modules on a string
  - Vertical spacing
  - How many modules
  - Number of PMTs per module
  - PMT orientations
  - ...
- Trigger

#### Objective

- Neutrino sensitivity (i.e. effective area)
- Resolution
  - Energy, Direction, Flavor
- Turns into
  - Diffuse neutrino flux sensitivity
  - Point source sensitivity (steady and transient, etc.)
  - ...

diverse science program different optima for different science cases

+ costs,

deployment constraints, engineering constraints

### **Automated Optimization Setup**

For each detector design:



## **Radio Detection of Neutrinos**



## Radio Detector Examples

#### **Radio Detector Examples**





## **Optimization of Radio Detector**

#### **Parameters to optimize**

- Station spacing and layout
- Station layout
  - number of antennas
  - position of antennas
  - type of antennas
  - orientation of antennas
- Trigger

#### **Objective**

- Neutrino sensitivity (i.e. effective area)
- Resolution
  - Energy, Direction, Flavor
- But also: Robustness against systematic uncertainties
  - Redundancy in measurments
- Also: Ability to reject rare background diverse science program

different optima for

different science cases

+ costs, deployment constraints, engineering constraints,

## **Optimization of Radio Detector**

For each detector design:



#### What we do at the moment

- Extrapolation from previous experiments
  - especially in harsh antarctic environment, reliability and technical feasibility important
- Usage of scaling relations
  - Using a multi-PMT optical module increases angular resolution by X% compare to a single PMT
  - Station spacing between radio stations vs. coincidence rate
  - Increase of sensitivity with deployment depth of radio antennas
- Individual studies:
  - Background rejection vs. station spacing and station layout
  - Antenna design (see GENETIS talk)
  - Trigger Optimization (e.g. phased array arXiv:1809.04573, neural network filter doi:10.22323/1.395.1074)
  - Detector resolution for specific layouts
    - e.g. CNN reconstruction of (optical) IceCube data arXiv:2101.11589
    - e.g. DNN reconstruction of radio data (doi:10.22323/1.395.1055, doi:10.22323/1.395.1051)

### Deep Learning Estimation of Reconstruction Resolution

- 1. Create MC data set for design X
  - >10k core hours
- 2. Train a deep neural network (DNN) to predict neutrino energy, direction and flavor
  - < day on a single GPU</p>
- 3. Use DNN resolution as a proxy for the performance of X

100

80

time [ns]

120

140

160

#### 250 n -50 50 F -250 250 3m -50 i 50 F -250 250 voltage $[\mu V]$ whith o Al 0 -250 -50 L 50 F 250 0 -250 -50 50 F 250

100

80

time [ns]

120

140

#### **Deep Learning Event Reconstruction**

-50

20

40

60

160

Shallow radio detector (ARIANNA, RNO-G, IceCube-Gen2) 

0

20

40

60

-250

- 39 million events generated with NuRadioMC
  - for proposed ARIANNA-200 at Ross Ice Shelf
  - so far only hadronic showers

17

10m

**Christian Glaser** 

## **Energy Resolution\***

#### PoS(ICRC2021)1051

\*: similar results also obtained for direction and flavor

- Deep convolutional neural network with 39 million free parameters
- Predicts shower energy based on raw waveforms
- Energy resolution: 80%
  - better than irreducible uncertainty from unknown inelasticity
- Further improvement with more training data expected





Challenge: resolution dependent on input data and network size

- > could be kept constant, but what if input size changes (e.g. more antennas)?

## Conclusions

- Optimization problem of optical and radio detector of IceCube-Gen2 is highly dimensional
  - Large parameter space
  - Detector simulation slow
  - Detector resolution difficult to quantify quickly
  - Additional contraints (costs, technical feasibility, deployment contraints ...) difficult to quanitify
- Deep neural networks successfully used for event reconstruction
- In the future:
  - use NN for automated estimation of detector abilities?
  - use NN to speed up simulation?
  - MODE tools?



# backup

## **Experimental Landscape**

#### **ARIANNA** test bed

• 12 shallow stations at Moore's Bay + South Pole

#### ARA

• 5x 200m deep stations at South Pole

## Radio technology developed and verified; hardware proven reliable



#### **RNO-G**

- 35 detector stations in Greenland
- first deployment summer 2021
  ARIANNA-200
- 200 shallow detector stations at Moore's Bay

future

funding decision pending



#### IceCube-Gen2

- 300+ detector stations at South Pole
- hybrid array of deep and shallow stations

