Targeted dark matter substructure inference with differentiable strong lensing

Adam Coogan (GRAPPA)

Based on <u>1910.06157</u>, <u>2010.07032</u> and <u>2105.09465</u>

With Marco Chianese, Camila Correa, Kosio Karchev, Noemi Anau Montel and Christoph Weniger

1st MODE Workshop, 7 September 2021

NGC 4414 (Hubble Heritage Team)

Lens mass

З

Lensed galaxy

ALMA, L. Calçada, Y. Hezaveh et al.

Typical inference: • Joint posterior — not scalable to e.g. multiple subhalos No source uncertainties

6

Goal: marginal posteriors for

- Number of subhalos
- Heaviest subhalo's properties
- Lower bound on masses

E.g. Vegetti & Koopmans 0805.0201

Simulation-based inference with neural ratio estimation

Observations

Johann Brehmer et al 2019, ApJ 886 49

Scaling to real images?

7

swyft (Miller et al 2020, arXiv:2107.01214)

Large variations make training hard. Our approach: targeted inference

Vegetti et al 2010, MNRAS 407 1 ESA/Hubble & NASA

<u>Gavazzi et al 2008, ApJ 677 1046</u> Bolton et al 2008, ApJ 682 964

Differentiable programming variational inference

2. Train inference network

Gaussian process source modeling

Directly models covariance in source plane Interpretable hyperparams, uncertainties

Rasmussen & Williams, 2006 (GPs for ML)

10

Issues with O(10⁵ x 10⁵) lens-dependent covariance matrix: Source parameter posteriors Evidence maximization for hyperparam optimization

Our solution: variational inference

Target distribution

Approx. distribution

Inference through optimization

Variational inference + Novel covariance factorization to eliminate matrix inversions **Differentiable lensing physics** ╋ Ore of the oreginal of the original of the or **Our GP Exact GP**

Simultaneously fit lens + source posteriors + hyperparams

12

Karchev, Coogan, Weniger 2105.09465

Variational inference results

Mean reconstruction of high-res image near noise level

Karchev, Coogan, Weniger 2105.09465

Excellent mean source reconstruction, along with uncertainties

15

Karchev, Coogan, Weniger 2105.09465

Targeted inference examples

Inference: single subhalo

Training data

Marginal posterior

Coogan, Karchev, Weniger 2010.07032

Training data

Inference: single heavy subhalo

Marginal posterior

Inference: mass function cutoff

Training data

Marginal posterior

Animation credit: Noemi Anau Montel

 $\log_{10} M_{\rm cutoff} / M_{\odot}$

(50 observations)

Marginalized over O(10⁵) source, lens and subhalo parameters by neural nets

 $\log_{10} M_{\rm cutoff} / M_{\odot}$

Conclusion

- Developed targeted inference strategy for lensing analysis
 - 1. Constrain lens + source with variational inference and novel approximate Gaussian process
 - 2. Apply simulation-based inference to get exact marginal posteriors with neural networks
- Result: marginal posteriors for subhalo parameters, marginalized over thousands of nuisance parameters
- (Almost) ready for application to existing and upcoming data
- Potentially useful for other analyses?

Thanks!