
JAXopt
Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX

https://github.com/google/jaxopt

Mathieu Blondel

joint work with Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F. Llinares-López, F. Pedregosa, J-P. Vert

https://github.com/google/jaxopt

Current state of optimization in SciPy

● scipy.optimize: Optimization, root finding, line search algorithms

● Small annoyances (e.g., no support for arbitrary parameter shapes)

● CPU only
○ Implementations are in Python, C / C++, FORTRAN, Cython

● Not built with autodiff in mind (gradients must be provided)

● API incompatible with argmin differentiation

Current state of optimization in JAX

● Batch optimization
○ jax.scipy.optimize

■ JAX port of a few algorithms from scipy.optimize (BFGS, L-BFGS)
■ Needs to maintain API compatibility with scipy.optimize
■ Not differentiable (neither via unrolling nor via implicit differentiation)

● Stochastic optimization
○ jax.experimental.optimizers, flax.optim, optax

■ Focus on stochastic optimization
■ Implicit differentiation is not supported

Project vision
● Goal: answer most modern optimization needs of ML and DL users

○ Stochastic optimization of DL models together with Flax or Haiku
○ Constrained and non-smooth optimization
○ Differentiable optimizers / argmin differentiation

■ Bi-level optimization (hyperparameter optimization, meta-learning, robust learning)
■ Optimization layers (structured attention, implicit deep learning, …)

● Leverage JAX’s idiomatic features
○ Autodiff at the heart of all our design decisions
○ Hardware acceleration (pmap, pjit) and automatic batching (vmap)

● API designed from the ground up (not necessarily compatible with scipy.optimize)

Basic API
● User-provided objective function

○ scalar_value = objective_fun(params, *args, **kwargs)

● Core methods
○ Constructor: solver = SolverClass(fun=objective_fun, maxiter=1000, …)

○ Initialization: params, state = solver.init(init_params, *args, **kwargs)

○ Performing one iteration: params, state = solver.update(params, state, *args, **kwargs)

● Optimization loop methods
○ Batch setting: params, state = solver.run(init_params, *args, **kwargs)

○ Stochastic setting: params, state = solver.run_iterator(init_params, iterator, *args, **kwargs)

Batch optimization example

def objective_fun(params, l2reg, X, y):

 residuals = jnp.dot(X, params) - y

 return 0.5 * jnp.mean(residuals ** 2) + 0.5 * l2reg * jnp.sum(params ** 2)

solver = GradientDescent(fun=objective_fun, maxiter=100)

init_params = jnp.zeros(X.shape[1])

loop taken care of by JAXopt

params, state = solver.run(init_params, l2reg, X, y)

manual loop

params, state = solver.init(init_params)

for _ in range(solver.maxiter):

 params, state = solver.update(params, state, l2reg, X, y)

Stochastic optimization example

def objective_fun(params, l2reg, data):

 X, y = data

 residuals = jnp.dot(X, params) - y

 return 0.5 * jnp.mean(residuals ** 2) + 0.5 * l2reg * jnp.sum(params ** 2)

solver = OptaxSolver(opt=optax.adam(1e-3), fun=loss_fun, …)

solver = PolyakSGD(fun=loss_fun, …)

loop taken care of by JAXopt

params, state = solver.run_iterator(init_params, iterator, l2reg=l2reg)

manual loop

params, state = solver.init(init_params)

for data in iterator:

 params, state = solver.update(params, state, l2reg=l2reg, data=data)

JAXopt’s current features
● Batch optimization

○ Gradient descent
○ Projected gradient and numerous projection operators
○ Proximal gradient and some proximal operators
○ Block coordinate descent
○ Mirror descent
○ Quadratic programming
○ SciPy wrapper (with pytree and implicit diff support)

● Stochastic optimization
○ Optax wrapper
○ SGD with Polyak adaptive step size

● Root finding
○ Bisection
○ SciPy Wrapper

● Argmin differentiation via unrolling or implicit differentiation

Implicit differentiation out-of-the-box

● Applications
○ Bi-level optimization (hyperparameter optimization, meta-learning, robust learning)
○ Optimization layers (structured attention, implicit deep learning, pathways, expert mixtures)
○ Sensitivity analysis

def objective_fun(params, l2regul, X, y):

 residuals = jnp.dot(X, params) - y

 return 0.5 * jnp.mean(residuals ** 2) + 0.5 * l2regul * jnp.sum(params ** 2)

def argmin_solution(l2regul, X, y):

 solver = GradientDescent(fun=objective_fun, maxiter=500, implicit_diff=True)

 init_params = jnp.zeros(X.shape[1])

 return solver.run(init_params, l2regul, X, y).params

Jacobian w.r.t. l2regul of argmin_solution

print(jax.jacobian(argmin_solution)(l2regul, X, y))

Implicit differentiation of custom solvers

● Decorators @custom_root and @custom_fixed_point make it easy to add implicit
differentiation on top of existing solvers (seamless integration with JAX’s autodiff)

def objective_fun(params, l2reg): # objective function

 residual = jnp.dot(X_tr, params) - y_tr

 return (jnp.sum(residual ** 2) + l2reg * jnp.sum(params ** 2)) / 2

optimality_fun = jax.grad(objective_fun) # optimality condition

@custom_root(optimality_fun)

def ridge_solver(init_params, l2reg):

 del init_params # Initialization not used in this solver

 XX = jnp.dot(X_tr.T, X_tr)

 Xy = jnp.dot(X_tr.T, y_tr)

 I = jnp.eye(X_tr.shape[1])

 return jnp.linalg.solve(XX + l2reg * I, Xy)

print(jax.jacobian(ridge_solver, argnums=1)(None, 10.0))

Implicit differentiation in JAXopt: how does it work?

● Let F: ℝᵈ × ℝⁿ → ℝᵈ be a user-provided capturing optimality conditions

● Let x*(θ) be a root of F: F(x*(θ), θ) = 0

● From the implicit function theorem, the Jacobian ∂ x*(θ) is given by solving the
following linear system of equations:

−∂₁ F(x*(θ), θ) ∂ x*(θ) = ∂₂ F(x*(θ), θ)

● We combine the implicit function theorem with autodiff of F

ArXiv preprint: https://arxiv.org/abs/2105.15183

https://arxiv.org/abs/2105.15183

Implicit differentiation: simplest example

● We want to differentiate an unconstrained optimization problem solution:

x*(θ) = argminx f(x, θ)

● Optimality condition: ∇₁ f(x, θ) = 0

 F(x, θ) = ∇₁ f(x, θ)

● ∂₁ F(x, θ) = ∇₁² f(x, θ) is the Hessian
● ∂₂ F(x, θ) = ∂₂ ∇₁ f(x, θ) is the cross-derivative

Large catalog of optimality conditions

ArXiv preprint: https://arxiv.org/abs/2105.15183

https://arxiv.org/abs/2105.15183

Hyperparameter optimization of
multiclass SVMs

Task-driven dictionary learning

Dataset distillation

Sensitivity analysis of
molecular dynamics

ArXiv preprint: https://arxiv.org/abs/2105.15183

https://arxiv.org/abs/2105.15183

Conclusion
● Hardware accelerated, batchable and differentiable optimizers

● Implicit differentiation out-of-the-box for JAXOpt solvers

● Implicit differentiation for custom solvers thanks to decorators

● We are open-source!
https://github.com/google/jaxopt

● We’re growing fast! Lots of on-going work!

https://github.com/google/jaxopt

