JAXopt

Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX

Mathieu Blondel

joint work with Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F. Llinares-Lopez, F. Pedregosa, J-P. Vert

Google Research

https://github.com/google/jaxopt

Current state of optimization in SciPy

e scipy.optimize: Optimization, root finding, line search algorithms
e Small annoyances (e.g., no support for arbitrary parameter shapes)

e CPUonly
o Implementations are in Python, C / C++, FORTRAN, Cython

e Not built with autodiff in mind (gradients must be provided)

e APl incompatible with argmin differentiation

Google Research

Current state of optimization in JAX

e Batch optimization
o jax.scipy.optimize
m JAX port of a few algorithms from scipy.optimize (BFGS, L-BFGS)
m Needs to maintain API compatibility with scipy.optimize
m Not differentiable (neither via unrolling nor via implicit differentiation)

e Stochastic optimization
o jax.experimental.optimizers, flax.optim, optax
m Focus on stochastic optimization
m Implicit differentiation is not supported

Google Research

Project vision

e Goal: answer most modern optimization needs of ML and DL users
o Stochastic optimization of DL models together with Flax or Haiku
o Constrained and non-smooth optimization
o Differentiable optimizers / argmin differentiation
m Bi-level optimization (hyperparameter optimization, meta-learning, robust learning)
m Optimization layers (structured attention, implicit deep learning, ...)

e Leverage JAX's idiomatic features
o Autodiff at the heart of all our design decisions

o Hardware acceleration (pmap, pjit) and automatic batching (vmap)

e API designed from the ground up (not necessarily compatible with scipy.optimize)

Google Research

Basic API

e User-provided objective function
o scalar_value = objective_fun(params, *args, **kwargs)

e Core methods
o Constructor: solver = SolverClass(fun=objective_fun, maxiter=1000, ...)

o Initialization: params, state = solver.init(init_params, *args, **kwargs)

o Performing one iteration: params, state = solver.update(params, state, *args, **kwargs)

e Optimization loop methods
o Batch setting: params, state = solver.run(init_params, *args, **kwargs)

o Stochastic setting: params, state = solver.run_iterator(init_params, iterator, *args, **kwargs)

Google Research

Batch optimization example

def objective_fun(params, 1l2reg, X, y):
residuals = jnp.dot(X, params) -y
return 0.5 * jnp.mean(residuals ** 2) + 0.5 * 12reg * jnp.sum(params ** 2)

solver = GradientDescent(fun=objective_fun, maxiter=100)
init_params = jnp.zeros(X.shape[1])

loop taken care of by JAXopt
params, state = solver.run(init_params, 1l2reg, X, y)

manual loop
params, state = solver.init(init_params)
for _ in range(solver.maxiter):
params, state = solver.update(params, state, 1l2reg, X, y)

Google Research

Stochastic optimization example

def objective_fun(params, 1l2reg, data):
X, y = data
residuals = jnp.dot(X, params) -y
return 0.5 * jnp.mean(residuals ** 2) + 0.5 * 12reg * jnp.sum(params ** 2)

solver = OptaxSolver(opt=optax.adam(1le-3), fun=loss_fun, ...)
solver = PolyakSGD(fun=loss_fun, ...)

loop taken care of by JAXopt
params, state = solver.run_iterator(init_params, iterator, 1l2reg=12reg)

manual loop
params, state = solver.init(init_params)
for data in iterator:
params, state = solver.update(params, state, 1l2reg=12reg, data=data)

Google Research

JAXopt's current features

e Batch optimization
o Gradient descent
Projected gradient and numerous projection operators
Proximal gradient and some proximal operators
Block coordinate descent
Mirror descent
Quadratic programming
SciPy wrapper (with pytree and implicit diff support)

c O O O O O

e Stochastic optimization

o Optax wrapper
o SGD with Polyak adaptive step size

e Root finding
o Bisection
o SciPy Wrapper

e Argmin differentiation via unrolling or implicit differentiation
Google Research

Implicit differentiation out-of-the-box

e Applications
o Bi-level optimization (hyperparameter optimization, meta-learning, robust learning)
o Optimization layers (structured attention, implicit deep learning, pathways, expert mixtures)
o Sensitivity analysis

def objective_fun(params, 12regul, X, y):
residuals = jnp.dot(X, params) -y
return 0.5 * jnp.mean(residuals ** 2) + 0.5 * 12regul * jnp.sum(params ** 2)

def argmin_solution(1l2regul, X, y):
solver = GradientDescent(fun=objective_fun, maxiter=500, implicit_diff=True)
init_params = jnp.zeros(X.shape[1])
return solver.run(init_params, 12regul, X, y).params

Jacobian w.r.t. 12regul of argmin_solution
print(jax.jacobian(argmin_solution)(1l2regul, X, y))

Google Research

Implicit differentiation of custom solvers

e Decorators @custom_root and @custom_fixed_point make it easy to add implicit
differentiation on top of existing solvers (seamless integration with JAX’s autodiff)

def objective_fun(params, l2reg): # objective function
residual = jnp.dot(X_tr, params) - y_tr
return (jnp.sum(residual ** 2) + 12reg * jnp.sum(params ** 2)) / 2

optimality fun = jax.grad(objective_fun) # optimality condition

@custom_root(optimality fun)
def ridge_solver(init_params, 1l2reg):
del init_params # Initialization not used in this solver
XX = jnp.dot(X_tr.T, X_tr)
Xy = jnp.dot(X_tr.T, y_tr)
I = jnp.eye(X_tr.shape[1])
return jnp.linalg.solve(XX + 12reg * I, Xy)

print(jax.jacobian(ridge_solver, argnums=1)(None, 10.0))

Google Research

Implicit differentiation in JAXopt: how does it work?

Google Research

Let F: Rd x R" — Rd be a user-provided capturing optimality conditions
Let x*(8) be aroot of F: F(x*(6),08) =0

From the implicit function theorem, the Jacobian 0 x*(8) is given by solving the
following linear system of equations:

~31 F(x*(8), 8) @ x*(8) = d: F(x*(8), 6)

We combine the implicit function theorem with autodiff of F

ArXiv preprint: https://arxiv.org/abs/2105.15183

https://arxiv.org/abs/2105.15183

Implicit differentiation: simplest example
e We want to differentiate an unconstrained optimization problem solution:
x*(8) = argmin_f(x, 6)
e Optimality condition: V1 f(x,8) =0
F(x, 0) = V. f(x, 8)
e 0:F(x, 0)=V2f(x, 0)is the Hessian

e 0:F(x,0)=0.V:f(x, 0) is the cross-derivative

Google Research

Large catalog of optimality conditions

Name Solution needed Oracles needed
Stationary Primal Vif
KKT Primal and dual Vif, H, G, 01H, 01G
Proximal gradient Primal Vi f, prox,,
Projected gradient Primal V1f, proje
Mirror descent Primal Vif, projs, Vo
Newton Primal [Vaf(x,0)]71, V1f(x,0)
Block proximal gradient Primal [V11]}, [Prox,l;
Conic programming Residual map root Projrex c* xR,

ArXiv preprint:

Google Research

https://arxiv.org/abs/2105.15183

Hyperparameter optimization of Task-driven dictionary learning
multiclass SVMs

Block coordinate descent (BCD) Table 2: Mean AUC (and 95% confidence interval) for the cancer survival prediction problem.
—e— Unrolling
5001 —»-. D ;,/ ||\4|3 fixed point Method | L;logreg Ljlogreg DictL + Ly logreg Task-driven DictL
a00{ " D W/ PG fixed point AUC (%) | 7T1.6+£2.0 72.4+28 68.3+2.3 73.2+2.1
300
200 Sensitivity analysis of
— - molecular dynamics
g DR M
0 oe—o=b I +\¥ % - Y = \ .
0 2000 4000 6000 8000 10000 ~ X - -
Number of features g e . X Y «
A > G X - o]
o 4 . X v \ - x
Dataset distillation ‘ > »
(v % P %\)
DR * O)R . ®
* Y R« ‘S -
¥ - »
A X e S * 3
¥ 'S P X
- \J D P
o XY & ‘ » P 1
ol o > Y A ¥ ¥ X
4 v > 1 X A A > s

ArXiv preprint: https://arxiv.org/abs/2105.15183

Google Research

https://arxiv.org/abs/2105.15183

Conclusion

e Hardware accelerated, batchable and differentiable optimizers
e Implicit differentiation out-of-the-box for JAXOpt solvers
e Implicit differentiation for custom solvers thanks to decorators

e We are open-source!
https://qgithub.com/google/jaxopt

e We're growing fast! Lots of on-going work!

Google Research

https://github.com/google/jaxopt

