JAXopt

Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX

Mathieu Blondel

joint work with Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F. Llinares-López, F. Pedregosa, J-P. Vert

https://github.com/google/jaxopt

Current state of optimization in SciPy

- scipy.optimize: Optimization, root finding, line search algorithms
- Small annoyances (e.g., no support for arbitrary parameter shapes)
- CPU only
 - o Implementations are in Python, C / C++, FORTRAN, Cython
- Not built with autodiff in mind (gradients must be provided)
- API incompatible with argmin differentiation

Current state of optimization in JAX

Batch optimization

- jax.scipy.optimize
 - JAX port of a few algorithms from scipy.optimize (BFGS, L-BFGS)
 - Needs to maintain API compatibility with scipy.optimize
 - Not differentiable (neither via unrolling nor via implicit differentiation)

Stochastic optimization

- o jax.experimental.optimizers, flax.optim, optax
 - Focus on stochastic optimization
 - Implicit differentiation is not supported

Project vision

- Goal: answer most modern optimization needs of ML and DL users
 - Stochastic optimization of DL models together with Flax or Haiku
 - Constrained and non-smooth optimization
 - Differentiable optimizers / argmin differentiation
 - Bi-level optimization (hyperparameter optimization, meta-learning, robust learning)
 - Optimization layers (structured attention, implicit deep learning, ...)
- Leverage JAX's idiomatic features
 - Autodiff at the heart of all our design decisions
 - Hardware acceleration (pmap, pjit) and automatic batching (vmap)
- API designed from the ground up (not necessarily compatible with scipy.optimize)

Basic API

User-provided objective function

scalar_value = objective_fun(params, *args, **kwargs)

Core methods

- Constructor: solver = SolverClass(fun=objective_fun, maxiter=1000, ...)
- Initialization: params, state = solver.init(init_params, *args, **kwargs)
- Performing one iteration: params, state = solver.update(params, state, *args, **kwargs)

Optimization loop methods

- Batch setting: params, state = solver.run(init_params, *args, **kwargs)
- Stochastic setting: params, state = solver.run_iterator(init_params, iterator, *args, **kwargs)

Batch optimization example

```
def objective_fun(params, 12reg, X, y):
  residuals = jnp.dot(X, params) - y
  return 0.5 * jnp.mean(residuals ** 2) + 0.5 * 12reg * jnp.sum(params ** 2)
solver = GradientDescent(fun=objective fun, maxiter=100)
init params = jnp.zeros(X.shape[1])
# loop taken care of by JAXopt
params, state = solver.run(init params, 12reg, X, y)
# manual loop
params, state = solver.init(init params)
for in range(solver.maxiter):
  params, state = solver.update(params, state, 12reg, X, y)
```

Stochastic optimization example

```
def objective fun(params, 12reg, data):
  X, v = data
  residuals = jnp.dot(X, params) - y
  return 0.5 * jnp.mean(residuals ** 2) + 0.5 * 12reg * jnp.sum(params ** 2)
solver = OptaxSolver(opt=optax.adam(1e-3), fun=loss fun, ...)
# solver = PolyakSGD(fun=loss fun, ...)
# loop taken care of by JAXopt
params, state = solver.run_iterator(init_params, iterator, 12reg=12reg)
# manual loop
params, state = solver.init(init params)
for data in iterator:
  params, state = solver.update(params, state, l2reg=l2reg, data=data)
```

JAXopt's current features

Batch optimization

- Gradient descent
- Projected gradient and numerous projection operators
- Proximal gradient and some proximal operators
- Block coordinate descent
- Mirror descent
- Quadratic programming
- SciPy wrapper (with pytree and implicit diff support)

Stochastic optimization

- Optax wrapper
- SGD with Polyak adaptive step size

Root finding

- Bisection
- SciPy Wrapper
- Argmin differentiation via unrolling or implicit differentiation
 Google Research

Implicit differentiation out-of-the-box

Applications

- Bi-level optimization (hyperparameter optimization, meta-learning, robust learning)
- Optimization layers (structured attention, implicit deep learning, pathways, expert mixtures)
- Sensitivity analysis

```
def objective_fun(params, 12regul, X, y):
    residuals = jnp.dot(X, params) - y
    return 0.5 * jnp.mean(residuals ** 2) + 0.5 * 12regul * jnp.sum(params ** 2)

def argmin_solution(12regul, X, y):
    solver = GradientDescent(fun=objective_fun, maxiter=500, implicit_diff=True)
    init_params = jnp.zeros(X.shape[1])
    return solver.run(init_params, 12regul, X, y).params

# Jacobian w.r.t. 12regul of argmin_solution
    print(jax.jacobian(argmin_solution)(12regul, X, y))
```


Implicit differentiation of custom solvers

 Decorators @custom_root and @custom_fixed_point make it easy to add implicit differentiation on top of existing solvers (seamless integration with JAX's autodiff)

```
def objective fun(params, 12reg): # objective function
 residual = inp.dot(X tr, params) - v tr
 return (jnp.sum(residual ** 2) + 12reg * jnp.sum(params ** 2)) / 2
optimality fun = jax.grad(objective fun) # optimality condition
@custom root(optimality fun)
def ridge solver(init params, 12reg):
 del init params # Initialization not used in this solver
 XX = jnp.dot(X tr.T, X tr)
 Xy = inp.dot(X tr.T, y tr)
 I = jnp.eye(X tr.shape[1])
 return jnp.linalg.solve(XX + 12reg * I, Xy)
print(jax.jacobian(ridge solver, argnums=1)(None, 10.0))
```


Implicit differentiation in JAXopt: how does it work?

- Let $F: \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}^d$ be a user-provided capturing **optimality conditions**
- Let $x^*(\theta)$ be a **root** of F: $F(x^*(\theta), \theta) = 0$
- From the **implicit function theorem**, the Jacobian $\partial x^*(\theta)$ is given by solving the following linear system of equations:

$$-\partial_1 F(x^*(\theta), \theta) \partial_1 x^*(\theta) = \partial_2 F(x^*(\theta), \theta)$$

We combine the implicit function theorem with autodiff of F

Implicit differentiation: simplest example

• We want to differentiate an **unconstrained optimization** problem solution:

$$x*(\theta) = \operatorname{argmin}_{x} f(x, \theta)$$

• Optimality condition: $\nabla_{\perp} f(x, \theta) = 0$

$$F(x, \theta) = \nabla_1 f(x, \theta)$$

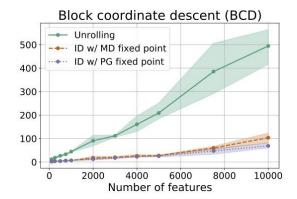
- $\partial_1 F(x, \theta) = \nabla_1^2 f(x, \theta)$ is the Hessian
- $\partial_2 F(x, \theta) = \partial_2 \nabla_1 f(x, \theta)$ is the cross-derivative

Large catalog of optimality conditions

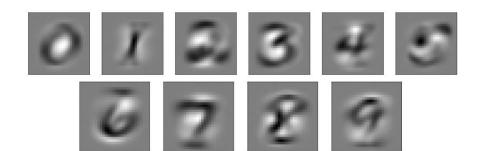
Name	Solution needed	Oracles needed	
Stationary	Primal	$\nabla_1 f$	
KKT	Primal <i>and</i> dual	$\nabla_1 f$, H , G , $\partial_1 H$, $\partial_1 G$	
Proximal gradient	Primal	$\nabla_1 f$, prox _{na}	
Projected gradient	Primal	$\nabla_1 f$, proj $_{\mathcal{C}}^{\eta g}$	
Mirror descent	Primal	$ abla_1 f$, $\operatorname{proj}_{\mathcal{C}}^{arphi}$, $ abla arphi$	
Newton	Primal	$[\nabla_1^2 f(x,\theta)]^{-1}, \nabla_1 f(x,\theta)$	
Block proximal gradient	Primal	$[\nabla_1 f]_j$, $[\operatorname{prox}_{\eta g}]_j$	
Conic programming	Residual map root	$proj_{\mathbb{R}^p imes\mathcal{K}^* imes\mathbb{R}_+}$	

ArXiv preprint: https://arxiv.org/abs/2105.15183

Hyperparameter optimization of multiclass SVMs



Dataset distillation

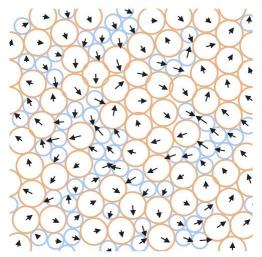


Task-driven dictionary learning

Table 2: Mean AUC (and 95% confidence interval) for the cancer survival prediction problem.

	L_2 logreg	$DictL + L_2 logreg$	Task-driven DictL
AUC (%) 71.6 ± 2.0	72.4 ± 2.8	68.3 ± 2.3	73.2 ± 2.1

Sensitivity analysis of molecular dynamics



ArXiv preprint: https://arxiv.org/abs/2105.15183

Conclusion

- Hardware accelerated, batchable and differentiable optimizers
- Implicit differentiation out-of-the-box for JAXOpt solvers
- Implicit differentiation for custom solvers thanks to decorators
- We are open-source!
 https://github.com/google/jaxopt
- We're growing fast! Lots of on-going work!