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Current state of optimization in SciPy

e scipy.optimize: Optimization, root finding, line search algorithms
e Small annoyances (e.g., no support for arbitrary parameter shapes)

e CPUonly
o Implementations are in Python, C / C++, FORTRAN, Cython

e Not built with autodiff in mind (gradients must be provided)

e APl incompatible with argmin differentiation
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Current state of optimization in JAX

e Batch optimization
o jax.scipy.optimize
m JAX port of a few algorithms from scipy.optimize (BFGS, L-BFGS)
m Needs to maintain API compatibility with scipy.optimize
m Not differentiable (neither via unrolling nor via implicit differentiation)

e Stochastic optimization
o jax.experimental.optimizers, flax.optim, optax
m Focus on stochastic optimization
m Implicit differentiation is not supported
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Project vision

e Goal: answer most modern optimization needs of ML and DL users
o  Stochastic optimization of DL models together with Flax or Haiku
o Constrained and non-smooth optimization
o Differentiable optimizers / argmin differentiation
m Bi-level optimization (hyperparameter optimization, meta-learning, robust learning)
m Optimization layers (structured attention, implicit deep learning, ...)

e Leverage JAX's idiomatic features
o Autodiff at the heart of all our design decisions

o Hardware acceleration (pmap, pjit) and automatic batching (vmap)

e API designed from the ground up (not necessarily compatible with scipy.optimize)
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Basic API

e User-provided objective function
o scalar_value = objective_fun(params, *args, **kwargs)

e Core methods
o  Constructor: solver = SolverClass(fun=objective_fun, maxiter=1000, ...)

o Initialization: params, state = solver.init(init_params, *args, **kwargs)

o Performing one iteration: params, state = solver.update(params, state, *args, **kwargs)

e Optimization loop methods
o Batch setting: params, state = solver.run(init_params, *args, **kwargs)

o Stochastic setting: params, state = solver.run_iterator(init_params, iterator, *args, **kwargs)
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Batch optimization example

def objective_fun(params, 1l2reg, X, y):
residuals = jnp.dot(X, params) -y
return 0.5 * jnp.mean(residuals ** 2) + 0.5 * 12reg * jnp.sum(params ** 2)

solver = GradientDescent(fun=objective_fun, maxiter=100)
init_params = jnp.zeros(X.shape[1])

# loop taken care of by JAXopt
params, state = solver.run(init_params, 1l2reg, X, y)

# manual loop
params, state = solver.init(init_params)
for _ in range(solver.maxiter):
params, state = solver.update(params, state, 1l2reg, X, y)
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Stochastic optimization example

def objective_fun(params, 1l2reg, data):
X, y = data
residuals = jnp.dot(X, params) -y
return 0.5 * jnp.mean(residuals ** 2) + 0.5 * 12reg * jnp.sum(params ** 2)

solver = OptaxSolver(opt=optax.adam(1le-3), fun=loss_fun, ...)
# solver = PolyakSGD(fun=loss_fun, ...)

# loop taken care of by JAXopt
params, state = solver.run_iterator(init_params, iterator, 1l2reg=12reg)

# manual loop
params, state = solver.init(init_params)
for data in iterator:
params, state = solver.update(params, state, 1l2reg=12reg, data=data)
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JAXopt's current features

e Batch optimization
o  Gradient descent
Projected gradient and numerous projection operators
Proximal gradient and some proximal operators
Block coordinate descent
Mirror descent
Quadratic programming
SciPy wrapper (with pytree and implicit diff support)
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e Stochastic optimization

o  Optax wrapper
o  SGD with Polyak adaptive step size

e Root finding
o  Bisection
o  SciPy Wrapper

e Argmin differentiation via unrolling or implicit differentiation
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Implicit differentiation out-of-the-box

e Applications
o  Bi-level optimization (hyperparameter optimization, meta-learning, robust learning)
o  Optimization layers (structured attention, implicit deep learning, pathways, expert mixtures)
o  Sensitivity analysis

def objective_fun(params, 12regul, X, y):
residuals = jnp.dot(X, params) -y
return 0.5 * jnp.mean(residuals ** 2) + 0.5 * 12regul * jnp.sum(params ** 2)

def argmin_solution(1l2regul, X, y):
solver = GradientDescent(fun=objective_fun, maxiter=500, implicit_diff=True)
init_params = jnp.zeros(X.shape[1])
return solver.run(init_params, 12regul, X, y).params

# Jacobian w.r.t. 12regul of argmin_solution
print(jax.jacobian(argmin_solution)(1l2regul, X, y))
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Implicit differentiation of custom solvers

e Decorators @custom_root and @custom_fixed_point make it easy to add implicit
differentiation on top of existing solvers (seamless integration with JAX’s autodiff)

def objective_fun(params, l2reg): # objective function
residual = jnp.dot(X_tr, params) - y_tr
return (jnp.sum(residual ** 2) + 12reg * jnp.sum(params ** 2)) / 2

optimality fun = jax.grad(objective_fun) # optimality condition

@custom_root(optimality fun)
def ridge_solver(init_params, 1l2reg):
del init_params # Initialization not used in this solver
XX = jnp.dot(X_tr.T, X_tr)
Xy = jnp.dot(X_tr.T, y_tr)
I = jnp.eye(X_tr.shape[1])
return jnp.linalg.solve(XX + 12reg * I, Xy)

print(jax.jacobian(ridge_solver, argnums=1)(None, 10.0))
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Implicit differentiation in JAXopt: how does it work?
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Let F: Rd x R" — Rd be a user-provided capturing optimality conditions
Let x*(8) be aroot of F: F(x*(6),08) =0

From the implicit function theorem, the Jacobian 0 x*(8) is given by solving the
following linear system of equations:

~31 F(x*(8), 8) @ x*(8) = d: F(x*(8), 6)

We combine the implicit function theorem with autodiff of F

ArXiv preprint: https://arxiv.org/abs/2105.15183
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Implicit differentiation: simplest example
e We want to differentiate an unconstrained optimization problem solution:
x*(8) = argmin_f(x, 6)
e Optimality condition: V1 f(x,8) =0
F(x, 0) = V. f(x, 8)
e 0:F(x, 0)=V2f(x, 0)is the Hessian

e 0:F(x,0)=0.V:f(x, 0) is the cross-derivative
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Large catalog of optimality conditions

Name Solution needed Oracles needed
Stationary Primal Vif
KKT Primal and dual Vif, H, G, 01H, 01G
Proximal gradient Primal Vi f, prox,,
Projected gradient Primal V1f, proje
Mirror descent Primal Vif, projs, Vo
Newton Primal [Vaf(x,0)]71, V1f(x,0)
Block proximal gradient Primal [V11]}, [Prox,l;
Conic programming Residual map root Projrex c* xR,
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Hyperparameter optimization of Task-driven dictionary learning
multiclass SVMs

Block coordinate descent (BCD) Table 2: Mean AUC (and 95% confidence interval) for the cancer survival prediction problem.
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Conclusion

e Hardware accelerated, batchable and differentiable optimizers
e Implicit differentiation out-of-the-box for JAXOpt solvers
e Implicit differentiation for custom solvers thanks to decorators

e We are open-source!
https://qgithub.com/google/jaxopt

e We're growing fast! Lots of on-going work!
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