
Training Samples Preparation
mo.jia@stonybrook.edu

Outline

• Framework

• Implementation on SeaWulf

• Test running results

• Next Steps

Framework

• Pyioopt

• a python package to read WCSim root files and generate images of hits
on the PMTs

• Ultimately will be able to convert the data stored in root files to hdf5
format files, i.e. the training samples

• Use pybind11 as the bindings to call c++ from python

Implementation

• Python3

• Root6

• WCSim

• Set an environment variable ${WCSIMDIR}

• Append the directory of pyioopt to the list of ${PYTHONPATH}

Test Running Results

Barrel q Barrel t

Muon events in one root file

Test Running Results

Bottom q Bottom t

Test Running Results

Top q Top t

Next Steps

• The ultimate goal is to convert the previous “images”, i.e. data on the grid,
into hdf5 files with WatChMal format

• Study the DataTools package in WatChMal

• Learn more about hdf5 and the interface to it in python

DataTools Package in
WatChMal

DataTools Package
• Tools for production and manipulation of data for WatChMal

• Sub-directories:

• data_quality

• Visualization

• cedar_scripts

• root_utils

Data Production for WatChMal
Based on cedar_scripts/

WCSim root files Npz format

run_WCSim_jobs.sh

Hdf5 format

root_utils/np_to_digihit_array_hdf5.py

root_utils/np_to_truehit_array_hdf5.py

make_digihit_h5.sh

make_truehit_h5.sh

NPZ is a file format by numpy that provides storage of array data using gzip compression.

root_utils/event_dump.py

root_utils/np_to_truehit_array_hdf5.py

• Create a h5py handle

root_utils/np_to_truehit_array_hdf5.py

• Get total event numbers and hit numbers

total_rows = number of events
total_hits = number of hits

root_utils/np_to_truehit_array_hdf5.py
•Create datasets stored in the output file

• Labels

• root_files

• event_ids

• hit_time

• hit_pmt

• hit_parent

• event_his_index

• Energies

• Positions

• Angles

• Veto

• Veto2

continued

root_utils/np_to_truehit_array_hdf5.py
• Read in data from npz file by file and set the values of datasets

Comparison with Current h5 files on Ivy
• Example: IWCDgrid_varyAll_mu-_20-2000MeV_100k.h5

• datasets stored in the file:

• Directions shape (1,3)

• Energies shape (1,)

• event_data shape (88,168,2)

• Labels shape ?

• Pid shape (1,)

• Positions shape (1, 3)

Node names Node type Size Maximum size:
infinite

Shape

Next Steps

• Look into the codes in root_utils/event_dump.py

• Learn more about hdf5 and the interface h5py

• NumPy

Recording WCSim-simulated
Events Info to hdf5 Format

h5py

• It is a Pythonic interface to the HDF5 binary data format

• Create a file object

• f = h5py.File(‘myfile.h5’, ‘w’)

• Create datasets within an h5

• dataset = f.create_dataset(‘node_name’, shape = (,), dtype=)

testWCSim.py in Pyioopt

• Extract event information from root files after loading

• Each event is kept as an element in this iterable of

reader object

• Event loop

• Sub-event loop

• Hits loop

• Pmt infos

• Interface to wcsim root files in pyioopt

Info kept by a reader object

Modification to testWCSim.py

• Hard-corded shape, should be replaced by a flexible way
• (row, column)

Modification to testWCSim.py

• sub[“vertex”] is a structured array

• Conver it to normal ndarray type and reshape it

to guarantee the compliance with the dataset

• Directly assign the charge and time 2D arrays to the dataset

Test Results
Tested with only one event

Problems
• Dataset for directions, pids, energies, labels

• The “trueTracks” struct in the event object keeps the information of all tracks in
that event, including the variables of interest

• How to determine the variables of the event?

• Which track should be considered as the one contains the information of the primary event ?

• Or how to calculate the variables using all the tracks?

• Verification?

