GNN for Water Cherenkov Detector

Junjie Xia, 5.28.2021

Fixing Correlation Implementation

$$
\begin{aligned}
& X_{1}=Z_{1}+Z_{c}, \\
& X_{2}=Z_{2}+Z_{c}
\end{aligned}
$$

Last time showed:
where $Z_{i} \sim \mathcal{N}\left(0, e^{O_{i}}\right)$ are "private information" and $Z_{c} \sim \mathcal{N}\left(0, e^{O_{3}}\right)$ is a "shared" gaussian information. Then we will have that

$$
\begin{aligned}
v_{1} & =e^{O_{1}}+e^{O_{3}} \\
v_{2} & =e^{O_{2}}+e^{O_{3}} \\
\rho & =\frac{e^{O_{3}}}{\sqrt{v_{1} \cdot v_{2}}}
\end{aligned}
$$

But in this case, the correlation can only be positive!

Instead:
$f_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right)=\frac{\exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)}{\sqrt{(2 \pi)^{k}|\mathbf{\Sigma}|}} \quad \Sigma^{-1}=A^{\mathrm{T}} A=\left(\begin{array}{cccc}\alpha_{11} & 0 & 0 & 0 \\ \alpha_{12} & \alpha_{22} & 0 & 0 \\ \alpha_{13} & \alpha_{23} & \alpha_{33} & 0 \\ \alpha_{14} & \alpha_{24} & \alpha_{34} & \alpha_{44}\end{array}\right)\left(\begin{array}{cccc}\alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} \\ 0 & \alpha_{22} & \alpha_{23} & \alpha_{24} \\ 0 & 0 & \alpha_{33} & \alpha_{34} \\ 0 & 0 & 0 & \alpha_{44}\end{array}\right)$
The matrix $A^{\top} A$ has to be positive definite, which imposes restriction on the network parameter output. Specifically:

1. The max value has to be on diagonal.
2. The average of any 2 diagonal elements must be larger than the real part of corresponding off-diagonal term $\mathrm{a}_{\mathrm{ii}}+\mathrm{a}_{\mathrm{ij}}>\left|2 \operatorname{Re}\left(\mathrm{a}_{\mathrm{i}}\right)\right|$.

But since we are only using 2-dimensional Hermitian matrices, this can be relatively simple to apply.

Fixing Correlation Implementation

$f_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right)=\frac{\exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)}{\sqrt{(2 \pi)^{k}|\mathbf{\Sigma}|}} \quad \Sigma^{-1}=A^{\mathrm{T}} A=\left(\begin{array}{cccc}\alpha_{11} & 0 & 0 & 0 \\ \alpha_{12} & \alpha_{22} & 0 & 0 \\ \alpha_{13} & \alpha_{23} & \alpha_{33} & 0 \\ \alpha_{14} & \alpha_{24} & \alpha_{34} & \alpha_{44}\end{array}\right)\left(\begin{array}{cccc}\alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} \\ 0 & \alpha_{22} & \alpha_{23} \\ 0 & \alpha_{2} \\ 0 & \alpha_{33} & \alpha_{34} \\ 0 & 0 & \alpha_{44}\end{array}\right)$

1. The max value has to be on diagonal.
2. The average of any 2 diagonal elements must be larger than the real part of corresponding off-diagonal term $\mathrm{a}_{\mathrm{i}}+\mathrm{a}_{\mathrm{ij}}>\left|2 \operatorname{Re}\left(\mathrm{a}_{\mathrm{i}}\right)\right|$.

In NN, apply the constraint on off-diagonal terms by

- $\mathrm{A}_{12}=\left(\operatorname{Sigmoid}\left(\mathrm{A}_{12}\right)-0.5\right) *\left(\mathrm{~A}_{11}+\mathrm{A}_{22}\right)$

So that the resulted diagonal term is within $(-0.5,0.5)^{*}\left(\mathrm{~A}_{11}+\mathrm{A}_{22}\right)$, and hence satisfying the requirements.

However, the more correct way of this should be done on the squared terms, i.e. $\mathrm{A}_{11^{2}}$, etc.
But with the square, there is an extra complication to determine the sign of A_{12}. The current implementation can result in a wider range of A_{12} than what's mathematically allowed (since $a^{2}+b^{2}<(a+b)^{2}$), but hopefully it will be a small effect...

Example of The New Implementation

1 Gauss
Sorry time unit should be 10 ns , not 100 ns

Example of The New Implementation

1 Gauss

$\gamma \mathrm{E}=700 \mathrm{MeV} \phi=2.94$

$e \mathrm{E}=700 \mathrm{MeV} \phi=2.94$
$\mu \mathrm{E}=700 \mathrm{MeV} \phi=2.94$

Example of The New Implementation

2 Gauss

Example of The New Implementation

2 Gauss
$\gamma \mathrm{E}=500 \mathrm{MeV} \phi=2.21$

$\mu \mathrm{E}=700 \mathrm{MeV} \phi=2.94$

$\mu \mathrm{E}=500 \mathrm{MeV} \phi=2.21$
$\gamma \mathrm{E}=700 \mathrm{MeV} \phi=2.94$

Example of The New Implementation

3 Gauss

Example of The New Implementation

3 Gauss

$\mu \mathrm{E}=500 \mathrm{MeV} \phi=2.21$

$\gamma \mathrm{E}=700 \mathrm{MeV} \phi=2.94$

Example of The New Implementation

4 Gauss

Charge (P.E.)
$e \mathrm{E}=700 \mathrm{MeV} \phi=2.94$

Charge (P.E.)
$\mu \mathrm{E}=700 \mathrm{MeV} \phi=2.94$

Example of The New Implementation

$\gamma \mathrm{E}=200 \mathrm{MeV} \phi=1.57$

4 Gauss

- 5 Gauss also runs fine. But the job lasted longer than 12 hrs and got terminated, 87\% done.
- Still have intermediate outputs.

Summary

$$
f_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right)=\frac{\exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)}{\sqrt{(2 \pi)^{k}|\mathbf{\Sigma}|}} \quad \Sigma^{-1}=A^{\mathrm{T}} A=\left(\begin{array}{cccc}
\alpha_{11} & 0 & 0 & 0 \\
\alpha_{12} & \alpha_{22} & 0 & 0 \\
\alpha_{13} & \alpha_{23} & \alpha_{33} & 0 \\
\alpha_{14} & \alpha_{24} & \alpha_{34} & \alpha_{44}
\end{array}\right)\left(\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} \\
0 & \alpha_{22} & \alpha_{23} & \alpha_{24} \\
0 & 0 & \alpha_{33} & \alpha_{34} \\
0 & 0 & 0 & \alpha_{44}
\end{array}\right)
$$

Implemented this "matrix method" in the NN, with changed definition of network outputs. The network now outputs $\mathrm{a}_{11}, \mathrm{a}_{12}, \mathrm{a}_{22}$, which in terms of sigma and correlation is

$$
\begin{gathered}
a_{11}=\frac{1}{\sigma_{t} \sqrt{1-\rho^{2}}} \\
a_{22}=\frac{1}{\sigma_{q}} \\
a_{12}=\frac{-\rho}{\sigma_{q} \sqrt{1-\rho^{2}}}
\end{gathered}
$$

Working on the maths for the LogNorm case.

Back Ups

