Recap 1st Lecture

Magnetic Rigidity $B\rho$: corresponding beam momentum $p = qB\rho$ defined by the bending magnets

Beam Guidance: dipole strength
$$\kappa = \frac{1}{\rho} = \frac{q}{p} B_0$$
, $[\kappa] = m^{-1}$ (curvature)

Beam Focusing: quadrupole strength
$$k = -\frac{q}{p} \frac{\partial B_y}{\partial x}$$
, $[k] = m^{-2} \left(\frac{1}{f} = kL\right)$

Magnetic Multipoles:
$$2n$$
 poles, "normal" and "skew", rotational symmetry $\frac{2\pi}{n}$ $s_n = \frac{q}{p} \frac{\partial^{n-1} B_y}{\partial x^{n-1}}$, $[s_n] = m^{-n}$

$$s_n = \frac{q}{p} \frac{\partial^{n-1} B_y}{\partial x^{n-1}}, \quad [s_n] = \mathbf{m}^{-n}$$

trajectory described by offsets (x,x',y,y') from design orbit, displacements $x,y << \rho$ **Paraxial Optics:**

Each element *i* is represented by transfer matrix \mathbf{M}_i , trajectory from $\vec{x} = \prod_i \mathbf{M}_i \cdot \vec{x}_0$ **Geometric Optics:**

Matrices (simple approx): dipole and drift
$$\mathbf{M}_D = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$$
 quadrupole $\mathbf{M}_Q = \begin{pmatrix} 1 & 0 \\ \pm 1/f & 1 \end{pmatrix}$