Recap $2^{\text {nd }}$ Lecture

Matrix Formalism: Each element i is represented by transfer matrix \mathbf{M}_{i}, trajectory from $\vec{x}=\prod_{i=1}^{n} \mathbf{M}_{i} \cdot \vec{x}_{0}$
Matrices (simple approx): \quad dipole and drift $\mathbf{M}_{D}=\left(\begin{array}{cc}1 & L \\ 0 & 1\end{array}\right) \quad$ quadrupole $\mathbf{M}_{Q}=\left(\begin{array}{cc}1 & 0 \\ \pm 1 / f & 1\end{array}\right)$
Equations of Motion: $\quad x^{\prime \prime}(s)+\left\{\frac{1}{\rho^{2}(s)}-k(s)\right\} x(s)=\frac{1}{\rho(s)} \frac{\Delta p}{p_{0}} \quad$ linearization of all terms

$$
y^{\prime \prime}(s)+k(s) y(s)=0
$$

Matrices from EQM: build from solution of EQM for individual elements \rightarrow piecewise solution of EQM Transverse "Spaces": configuration space (x, y), (horz.) trace space (x, x '), (horz.) phase space $\left(x, p_{x}\right)$

Beam Size \& Divergence: based on 2 ${ }^{\text {nd }}$ statistical moments: $\quad \sigma_{x}^{2}=\overline{x^{2}}, \quad \sigma_{x^{\prime}}^{2}=\overline{x^{\prime 2}}$
(Geom.) Emittance: \quad area/ π occupied by the beam in trace space, statistically defined by second moments

$$
\varepsilon_{x}=\sqrt{\overline{x^{2}} \overline{\overline{x^{\prime 2}}}-\overline{x x^{\prime}}}, \quad \varepsilon_{y}=\sqrt{\overline{y^{2}} \overline{y^{\prime 2}}-\overline{y y^{\prime}}}
$$

