Longitudinal calculations cheat sheet
Relativistic relationships
- Mass energyE0=m0c2
- Total energyE=Ekin+E0
- MomentumE=(pc)2+E02p=γm0βc
- Relativistic velocityβ=cv=Epc=1−γ21
- Lorentz factorγ=E0E=1−β21
- Differential relationshipspdp=β21EdE=γ2βdβ
Machine parameters
- Magnetic rigidityBρ=qp
- Revolution period/frequencyT=v2πR=f1=ω2π
- RF period/frequencyfrf=hf=2πωrf=Trf1
- Linear momentum compaction factor (and transition factor)αc=Δp/pΔR/R=γt21
- Linear phase slippage factorη=Δp/pΔT/T=−Δp/pΔf/f=αc−γ21
- Other useful relationshipp=ωβ2E
Longitudinal equations of motion
- Equation of motion 1 - Phase slippage (drift) along the ring (continuous)dtdϕ=pRhηω(ωΔE)=β2Ehηω2(ωΔE)
- Equation of motion 2 - Energy kick with single RF cavity (continuous)dtd(ωE)=2πqV(sinϕ−sinϕs)
- Equation of motion 1 - Phase slippage (drift) along the ring (discretized over T)ϕn+1=ϕn+2πhηβ2EΔEn
- Equation of motion 2 - Energy kick in cavity (discretized over T, ω˙ neglected)ΔEn+1=ΔEn+qVsin(ϕn+1)−U0
- Beam energy gain per turnU0=qVsinϕs
Bucket parameters and synchrotron motion
- Bucket heightΔEmax=βπh∣η∣2qVEY(ϕs)
- Bucket height reduction factorY(ϕs)=∣∣cosϕs−2π−2ϕssinϕs∣∣1/2
- Bucket areaAbk=16ωrfβ2πh∣η∣qVEα(ϕs)
- Bucket area reduction factorα(ϕs)≈1+sinϕs1−sinϕs
- Angular synchrotron frequency (small amplitudes)Ωs2=2πfs=−ω22πβ2EhηqVcosϕs
- Non-linear synchrotron frequency for a maximum amplitude in phase ϕuΩsΩ(ϕu)≈1−16ϕu2
- Synchrotron tuneQs=ωΩs
Differential relationships
C. Bovet et al., A selection of formulae and data useful for the design of A.G. synchrotrons, CERN-MPS-SI-Int-DL-70-4
Variables |
Equations |
B,p,R |
pdp=γt2RdR+BdB |
f,p,R |
pdp=γ2fdf+γ2RdR |
B,f,p |
BdB=γt2fdf+γ2γ2−γt2pdp |
B,f,R |
BdB=γ2fdf+(γ2−γt2)RdR |