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at the CERN Accelerator School. The term “lecture” includes any material
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Agenda of the afternoon

16h30 – 17h00

Introduction to exercises

17h00 – 17h45

Longitudinal tracking

Legstretch

18h00 – 18h45

Longitudinal tracking

18h45 – 19h30

Discussion on solutions of exercises
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• Introduction
• Interaction between beam and RF system

• Longitudinal particle tracking
• Basic tracking equations

• Single and multiple particle tracking

• Summary

Outline
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Introduction
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Study interaction between beam and RF

Complementary approaches for the same problem

(Semi-)Analytical Numerical: tracking

• Describe particle motion by 
differential equations

 Continuous trajectories of 
particle motion

 Deduce useful parameters for 
stable acceleration:

 RF bucket
 Synchrotron frequency
 Stable phase
 ...

• Track particle parameters from 
turn to turn

 Profit from discretization of 
motion: turn-by-turn

 No notion of RF bucket, 
synchrotron, stable phase, etc.

 Follow ensemble of particles to 
study evolution of bunch

 Classical introduction of 
longitudinal beam dynamics

 Flexible brute-force approach
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1. Design RF system (upgrade)
LongitudinalHandsOnRFSystemCalculations_empty.ipynb

• Study boundary constraints

• Derive requirements for RF system

• Choose main components

• Compare with existing facilities

2. Play with longitudinal beam dynamics
LongitudinalHandsOnTracking_empty.ipynb

• Build your own particle tracker

• Understand motion of particles in
longitudinal phase space

• Transition from single particle motion to evolution
of an entire bunch

Objectives of longitudinal hands-on
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Longitudinal tracking
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Tracking simulation flow

Generate initial 
distribution

Accelerator 
parameters

RF system 
parameters

Tracking

 Plot and analyse results
 Compare with measurements

 Follow the coordinates of one or more particles 
determine its behaviour
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Circular accelerator without RF system

• Particles with higher or lower momentum have a 
different orbit compared to a reference particle

 Arrival time/phase depends on energy

ring

, phase slip factor:
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Arrival phase of a particle at next turn

 Turn-by-turn drift equation

 Azimuth, q or phase, f a particles arrives next turn
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Circular accelerator with RF station

• Particle energy changes at 
passage through cavity

 For sinusoidal RF voltage:

 With acceleration:

 General energy change:

Reference particle: 
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• RF systems modelled point-like mostly valid approximation

 Valid in most cases

Exceptions:

 Large synchrotron tune fS/frev

 Strong intensity effects: interaction within one turn

 Beam energy changing during turn

Multiple RF stations

LHC SPS
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Multiple RF stations
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Acceleration 

2.8 – 10 MHz

40 MHz

80 MHz

RF Manipulations

200 MHz

Longitudinal blow-up

2

20 MHz0.4 – 5 MHz

to SPS

 Small QS = fS/frev: Single kick per turn fully sufficient 
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Example: Electrons and positrons in LEP

• Beam energy changed in LEP along turn due to strong 
synchrotron radiation

Positrons

Electrons

• 4  2 RF sections

 Energy loss in bending 
magnets

 Track from RF section 
to RF section
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Combining both tracking equations

• Observe phase and energy error at each turn with 
respect to reference particle

• Test particles: Df = f – fS = 0 DE = 0

Df  0 DE = 0

Df = 0 DE  0
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Longitudinal phase space

Energy dependent phase advance, f:

Phase dependent energy gain, DE:

Simple accelerator model:

Works for arbitrary shape of acceleration amplitude g(f)
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Continuous versus discrete

• Analytical solution describes static condition

• No notion of turn-by-turn evolution

 Same result with both approaches for QS = fS/frev << 1



20

Example: simple tracking in Python

• Follow the trajectory of a single particle

Turn n  n+1
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Choice of particle coordinates

• Time or phase? Momentum or energy?

• Absolute or relative coordinates

Advantages Disadvantages

t E • Most universal
• Suitable for any tracking
• Canonically conjugated

• Numerical precision: large 
absolute value

• Relative bunch motion more 
difficult to follow

Dt DE • Relevant deviations only
• Canonically conjugated
• Most suited for multiple h

• Required synchronous particle 
as reference

• Duration of turn may change

F E, 

DE
• Turn length always 2p

• Relevant deviations only
• Requires synchronous particle 

as reference
• Not canonically conjugated

f E, 

DE
• RF bucket length always 2p

• Relevant deviations only
• Most suited for single h

• Requires synchronous particle 
as reference

• Not canonically conjugated
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Tracking simulation flow

Generate initial 
distribution

Accelerator 
parameters

RF system 
parameters

Tracking

 Plot and analyse results
 Compare with measurements
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Distributions and projections

From single particle tracking to distribution

 1010…1012 particles per bunch  too much computing power

 Macro-particles to reduce  up to few 106 per bunch

Normal distribution in x, y
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Projections of distributions

 Time projection directly 
observable: bunch profile

• Very  common task:

 e.g. Python seaborn
 plot_phase_space_

distribution



25

Example: Tracking of a single bunch

• Set-up bunch with parabolic distribution: generate_bunch

• Most simple case: single harmonic RF without acceleration

Correct voltage at correct phase Wrong voltage at correct phase

 Matched bunch  Breathing bunch 
(quadrupole)
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Example: Tracking of a single bunch

• Set-up bunch with parabolic distribution: generate_bunch

• Most simple case: single harmonic RF without acceleration

Correct voltage at wrong phase All correct, but wrong energy

 Dipole oscillations
 Phase and energy offset for example at injection
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Getting closer to reality

 State-of-the-art tracking may include much more

Multiple RF systems with
changing parameters

Non-linear phase 
slip factor, e.g. 

transition

Energy loss: 
synchrotron 
radiation or 
impedances

Beam induced
voltage

AccelerationGlobal regulation loops for 
beam phase and radial 

position

Feedbacks
around cavities
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Longitudinal tracking codes

Name Remarks

BLonD • Widely used at CERN
• Complex RF manipulations and feedbacks
• Longitudinal intensity effects

http://blond.web.cern.ch/

ESME • Longitudinal work horse code for many years
• RF manipulations with multiple RF systems
• Intensity effects

esme.fnal.gov

PyHeadTail • Longitudinal and transverse combined simulation
https://twiki.cern.ch/twiki/bin/view/ABPComputing/PyHEADTAIL

PyOrbit • Longitudinal and transverse combined simulation
https://twiki.cern.ch/twiki/bin/view/ABPComputing/PyORBIT

elegant • Longitudinal and transverse combined simulation
• Mainly used for electron accelerators

https://ops.aps.anl.gov/elegant.html
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• Dedicated to longitudinal dynamics: fast and focussed on RF aspects

• Combined transverse and longitudinal tracking

http://blond.web.cern.ch/
esme.fnal.gov
https://twiki.cern.ch/twiki/bin/view/ABPComputing/PyHEADTAIL
https://twiki.cern.ch/twiki/bin/view/ABPComputing/PyORBIT
https://ops.aps.anl.gov/elegant.html
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Summary

• Longitudinal simulations using particle tracking

 Complementary approach to longitudinal beam 
dynamics

 Flexibility to change parameters during tracking

 Powerful technique to study

• Multi-harmonic RF systems

• Complicated intensity effects

• Longitudinal dynamics with feedbacks and RF loops
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longitudinal tracking code
You will build a (small) 

…is your friend!
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Thank you very much            
for your attention!
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