

Beam Instrumentation & Diagnostics Part 1

CAS Introduction to Accelerator Physics
Chavannes de Bogis, 29thof September 2021
Peter Forck

Gesellschaft für Schwerionenforschnung (GSI)
p.forck@gsi.de

Beam Instrumentation: Functionality of devices & basic applications

Beam Diagnostics: Usage of devices for complex measurements

Demands on Beam Diagnostics

Diagnostics is the 'sensory organs' for the beam in the real environment.

(Referring to lecture by Volker Ziemann: 'Detecting imperfections to enable corrections')

Different demands lead to different installations:

- ➤ Quick, non-destructive measurements leading to a single number or simple plots Used as a check for online information. Reliable technologies have to be used Example: Current measurement by transformers
- ➤ Complex instruments for severe malfunctions, accelerator commissioning & development
 The instrumentation might be destructive and complex
 Example: Emittance determination, chromaticity measurement

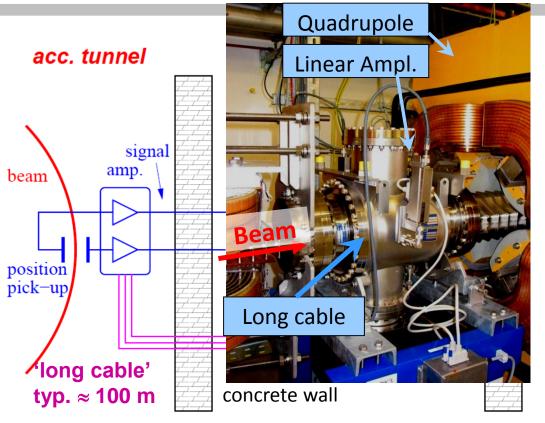
General usage of beam instrumentation:

- Monitoring of beam parameters for operation, beam alignment & accelerator development
- Instruments for automatic, active beam control
 Example: Closed orbit feedback at synchrotrons using position measurement by BPMs

Non-invasive (= 'non-intercepting' or 'non-destructive') methods are preferred:

- \triangleright The beam is not influenced \Rightarrow the **same** beam can be measured at several locations
- > The instrument is not destroyed due to high beam power

Typical Installation of a Beam Instrument



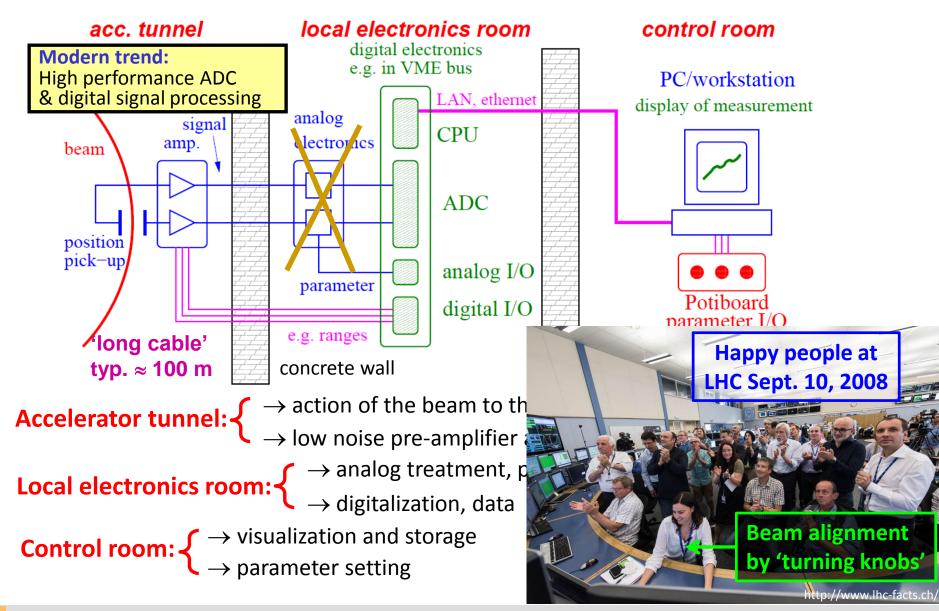
Accelerator tunnel:

- → action of the beam to the detector
- → low noise pre-amplifier and first signal shaping

Local electronics room: {

- ightarrow analog treatment, partly combining other parameters ightarrow digitalization, data bus systems (GPIB, VME, cPCI, $\mu TCA...$)

Typical Installation of a Beam Instrument



Outline of the Lectures

The ordering of the subjects is oriented by the beam quantities:

Part 1 of the lecture on electro-magnetic monitors:

- Current measurement
- Beam position monitors for bunched beams

Part 2 of the lecture on transverse and longitudinal diagnostics:

- Profile measurement
- Transverse emittance measure
- Measurement of longitudinal parameters

Lecture on Machine Protection System on Thursday:

Beam loss detection as one subject

Instruments could be different for:

- \triangleright Transfer lines with single pass \leftrightarrow synchrotrons with multi-pass
- ➤ Electrons are (nearly) always relativistic → protons are at the beginning non-relativistic

Remark:

Most instrumentation is installed outside of rf-cavities to prevent for signal disturbance

Measurement of Beam Current

The beam current and its time structure the basic quantity of the beam:

- > It this the first check of the accelerator functionality
- > It has to be determined in an absolute manner
- > Important for transmission measurement and to prevent for beam losses.

Different devices are used:

> Transformers: Measurement of the beam's magnetic field

Non-destructive

No dependence on beam type and energy

They have lower detection threshold.

Faraday cups: Measurement of the beam's electrical charges

Magnetic field of the beam and the ideal Transformer

 \blacktriangleright Beam current of N_{part} charges with velocity eta

$$I_{beam} = qe \cdot \frac{N_{part}}{t} = qe \cdot \beta c \cdot \frac{N_{part}}{l}$$

- \triangleright cylindrical symmetry
- → only azimuthal component

$$\vec{\mathbf{B}} = \mu_0 \frac{I_{beam}}{2\pi r} \cdot \vec{\mathbf{e}_{\varphi}}$$

Example: $I = 1 \mu A$, $r = 10 \text{cm} \Rightarrow B_{beam} = 2 \text{pT}$, earth $B_{earth} = 50 \mu T_{beam \text{ current I}}$

⇒ Loaded current transformer

$$I_1/I_2 = N_2/N_1 \Rightarrow I_{sec} = 1/N \cdot I_{beam}$$

Inductance of a torus of
$$\mu_r$$

$$L = \frac{\mu_0 \mu_r}{2\pi} \cdot lN^2 \cdot \ln \frac{r_{out}}{r_{in}}$$

Goal of torus: Large inductance L and guiding of field lines.

Definition: $U = L \cdot dI/dt$

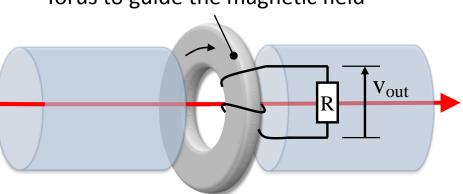
Torus to guide the magnetic field

magnetic field B

at radius r:

 $B \sim 1/r$

 $\overrightarrow{B} \parallel \overrightarrow{e}_{0}$

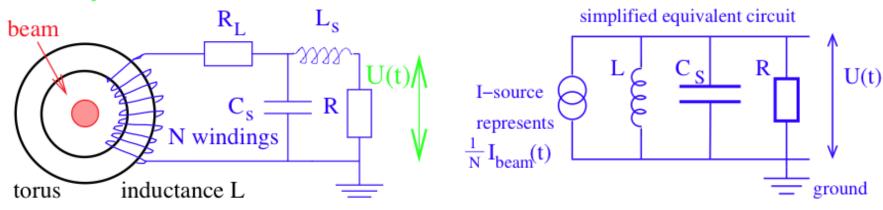


 I_{beam}

Fast Current Transformer FCT (or Passive Transformer)

Simplified electrical circuit of a passively loaded transformer:

passive transformer





A voltages is measured: $U = R \cdot I_{sec} = R / N \cdot I_{beam} \equiv S \cdot I_{beam}$ with S sensitivity [V/A],

equivalent to transfer function or transfer impedance **Z**

Equivalent circuit for analysis of sensitivity and bandwidth (disregarding the loss resistivity R_L)

Response of the Passive Transformer: Rise and Droop Time

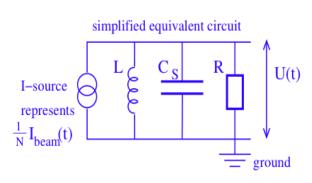
Time domain description:

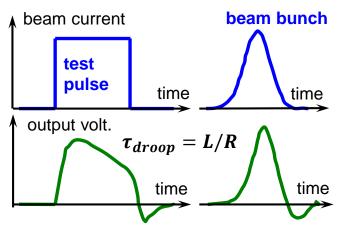
Droop time: $\tau_{droop} = 1/(2\pi f_{low}) = L/R$

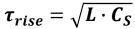
Rise time: $\tau_{rise} = 1/(2\pi f_{high}) = RC_s$ (ideal without cables)

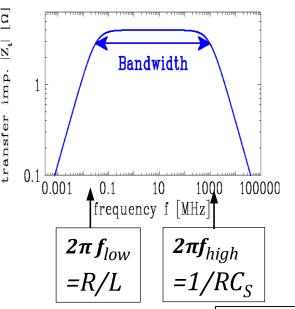
Rise time: $\tau_{rise} = 1/(2\pi f_{high}) = \sqrt{L_S C_S}$ (with cables)

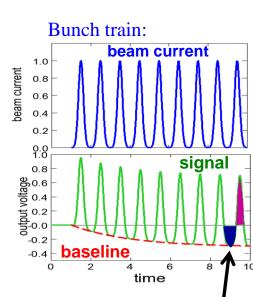
 R_L : loss resistivity, R: for measuring.











Baseline: $U_{base} \propto 1 - \exp(-t/\tau_{droop})$ positive & negative areas are equal

Example for Fast Current Transformer

For bunch beams e.g. during accel. in a synchrotron typical bandwidth of 2 kHz < f < 1 GHz

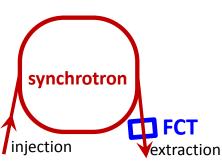
 \Leftrightarrow 10 ns < t_{hunch} < 1 μ s is well suited

Example: GSI Fast Current Transformer **FCT**:

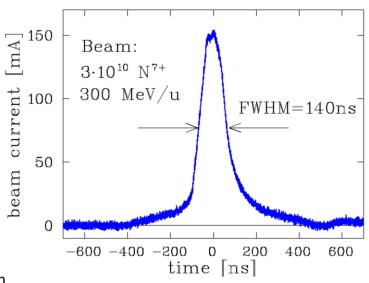
Inner / outer radius	70 / 90 mm
Permeability	$\mu_r \approx 10^5$ for f < 100 kHz $\mu_r \propto 1/f$ above
Windings	10
Sensitivity	4 V/A for R = 50Ω
Droop time $\tau_{droop} = L/R$	0.2 ms
Rise time $\tau_{rise} = \sqrt{L_S C_S}$	1 ns
Bandwidth	2 kHz 500 MHz

Numerous application e.g.:

- Transmission optimization
- Bunch shape measurement
- Input for synchronization of 'beam phase'



Fast extraction from GSI synchrotron:

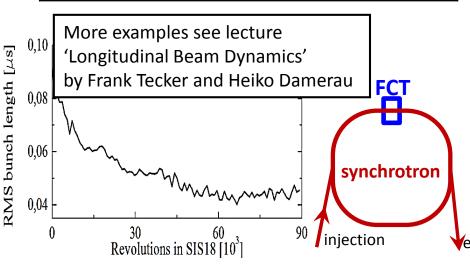


Example for Fast Current Transformer

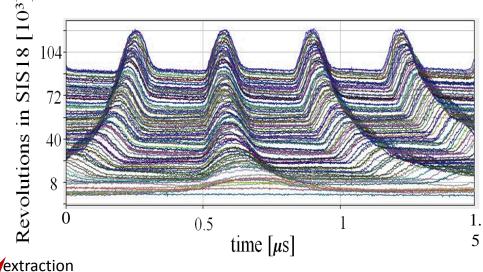
For bunch beams e.g. during accel. in a synchrotron typical bandwidth of 2 kHz < f < 1 GHz

 \Leftrightarrow 10 ns < t_{hunch} < 1 μs is well suitedv Example GSI type:

Inner / outer radius	70 / 90 mm
Permeability	$\mu_r \approx 10^5$ for f < 100 kHz $\mu_r \propto 1/f$ above
Windings	10
Sensitivity	4 V/A for R = 50Ω
Droop time $\tau_{droop} = L/R$	0.2 ms
Rise time $\tau_{rise} = \sqrt{L_S C_S}$	1 ns
Bandwidth	2 kHz 500 MHz



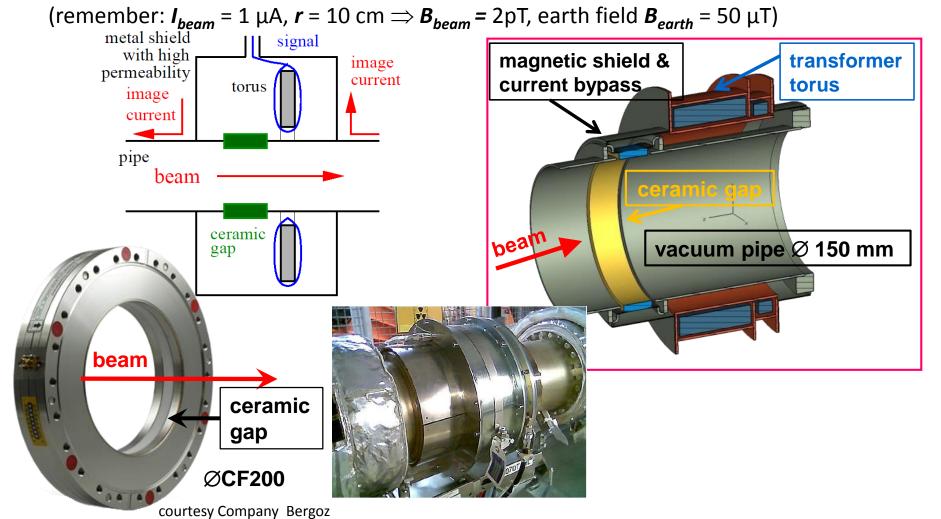
Example: U^{73+} from 11 MeV/u (β = 15 %) to 350 MeV/u within 300 ms (displayed every 0.15 ms)



Shielding of a Transformer

Task of the shield:

- The image current of the walls have to be bypassed by a gap and a metal housing.
- This housing uses μ-metal and acts as a shield of external B-field



The dc Transformer

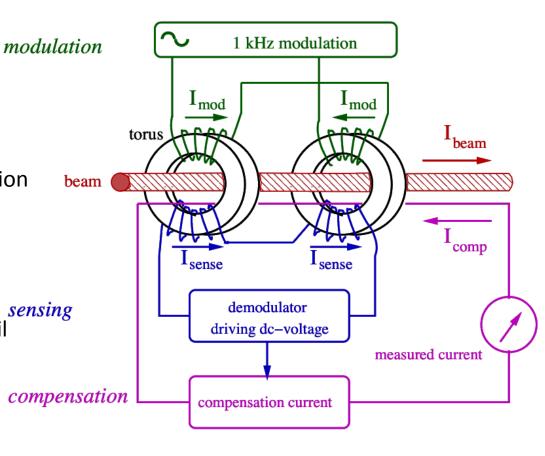
How to measure the DC current? The current transformer discussed sees only B-flux *changes*. The DC Current Transformer (DCCT) \rightarrow look at the magnetic saturation of two torii.

Depictive statement:

A single transformer needs varying beam. The trick is to 'switch two transformers'!

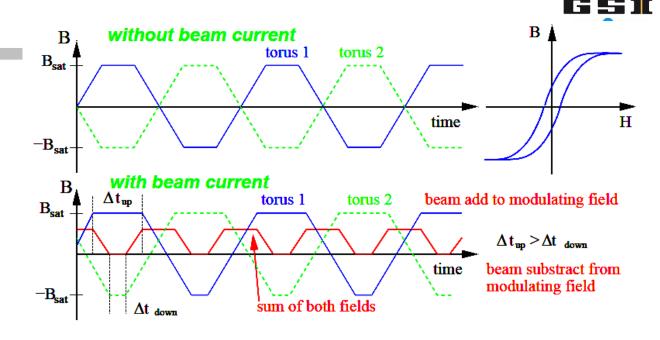
- > Modulation of the primary windings forces both torii into saturation twice per cycle
- > Sense windings measure the modulation signal and cancel each other.
- \triangleright But with the I_{beam} , the saturation is shifted and I_{sense} is not zero
- > Compensation current adjustable until

 I_{sense} is zero once again



sensing

The dc Transformer



Modulation without beam:

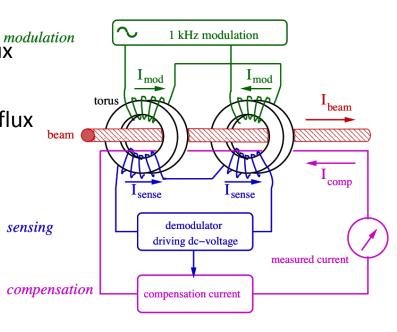
typically about 9 kHz to saturation \rightarrow **no** net flux

Modulation with beam:

saturation is reached at different times, \rightarrow net flux

- ➤ **Net flux:** double frequency than modulation
- Feedback: Current fed to compensation winding for larger sensitivity
- > Two magnetic cores: Must be very similar.

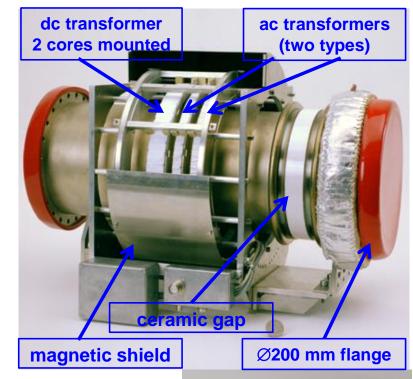
Remark: Same principle used for power suppliers



The dc Transformer Realization

Example: The DCCT at GSI synchrotron

Torus radii	r _i = 135 mm r _o =145 mm
Torus thickness	d = 10 mm
Torus permeability	$\mu_{\rm r} = 10^5$
Saturation inductance	B _{sat} = 0.6 T
Number of windings	16 for modulation & sensing 12 for feedback
Resolution	I ^{min} _{beam} = 2 µA
Bandwidth	$\Delta f = dc \dots 20 \text{ kHz}$
Rise time constant	$\tau_{\rm rise} = 10 \ \mu \rm s$
Temperature drift	1.5 μA/°C



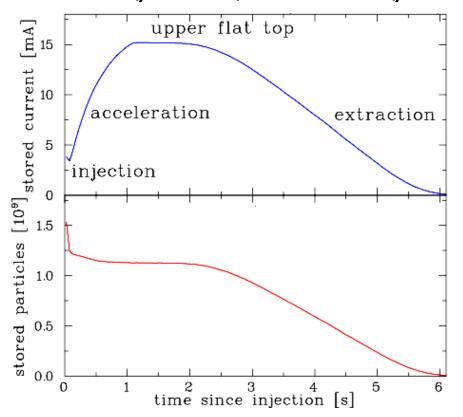
Measurement with a dc Transformer

Application for dc transformer:

 \Rightarrow Observation of beam behavior with typ. 20 µs time resolution \Rightarrow the basic operation tool

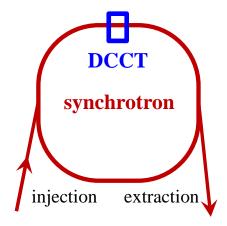
Example: The DCCT at GSI synchrotron U⁷³⁺ accelerated from

11. 4 MeV/u (β = 15.5%) to 750 MeV/u (β = 84 %)



Important parameter:

- Detection threshold: ≈ 1 μA(= resolution)
- \triangleright Bandwidth: Δf = dc to 20 kHz
- \triangleright Rise-time: t_{rise} = 20 μs
- Temperature drift: 1.5 μA/°C
 - \Rightarrow compensation required.



Measurement of Beam Current

>Transformers: Measurement of the beam's magnetic field

Non-destructive

No dependence on beam type and energy

They have lower detection threshold.

Faraday cups: Measurement of the beam's electrical charges

They are destructive

For low energies only

Low currents can be determined.

Energy Loss of Protons & Ions

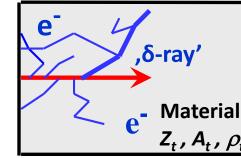
Bethe-Bloch formula:
$$-\frac{dE}{dx} = 4\pi N_A r_e^2 m_e c^2 \left(\cdot \frac{Z_t}{A_t} \rho_t \right) \left(\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 \cdot W_{max}}{I^2} - \beta^2 \right) \left(\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 \cdot W_{max}}{I^2} - \beta^2 \right)$$
 (simplest formulation)

Semi-classical approach:

- Projectiles of mass M collide
- with free electrons of mass m
- If M >> m then the relative energy transfer is low mass M
- \Rightarrow many collisions required many elections participate proportional to target electron density $m{n}_e = rac{Z_t}{A_t} m{
 ho}_t$
- ⇒ low straggling for the heavy projectile i.e. 'straight trajectory'
- \triangleright If projectile velocity $\beta \approx 1$ low relative energy change of projectile (γ is Lorentz factor)
- \succ I is mean ionization potential including kinematic corrections $I \approx Z_t \cdot 10 \text{ eV}$ for most metals
- > Strong dependence an projectile charge Z_p as $\frac{dE}{dx} \propto Z_p^2$

Constants: N_A Advogadro number, r_e classical e^- radius, m_e electron mass, c velocity of light

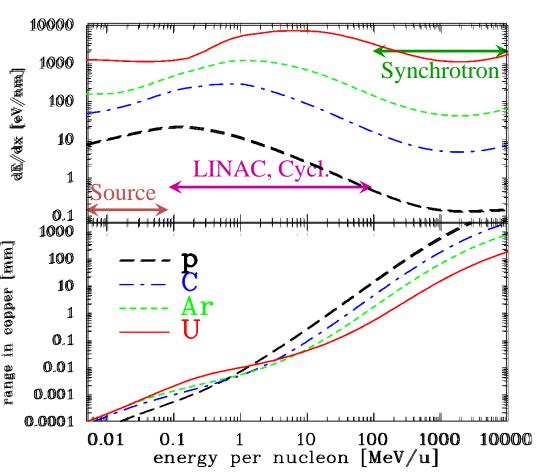
Maximum energy transfer from projectile ${\bf M}$ to electron ${\bf m_e}$: $W_{max} = \frac{2m_ec^2\beta^2\gamma^2}{1+2\gamma m_e/M+(m_e/M)^2}$



Energy Loss of Protons & Ions in Copper

Bethe-Bloch formula:
$$-\frac{dE}{dx} = 4\pi N_A r_e^2 m_e c^2 \cdot \frac{Z_t}{A_t} \rho_t \cdot Z_p^2 \cdot \frac{1}{\beta^2} \left(\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 \cdot W_{max}}{I^2} - \beta^2 \right)$$
 (simplest formulation)

Range:
$$R = \int_{0}^{E_{\text{max}}} \left(\frac{dE}{dx}\right)^{-1} dE$$
 with approx. scaling $R \propto E_{max}^{1.75}$ Numerical calculation for **ions** with semi-empirical model e.g. SRIM Main modification $Z_P \rightarrow Z_p^{eff}(E_{kin})$ \Rightarrow Cups only for E_{kin} < 100 MeV/u due to R < 10 mm



Approximation e.g. $Z_p^{eff} \approx Z_p \left[1 - \exp\left(-Z_p^{-2/3}c\beta / V_{Bohr}\right) \right]$

Secondary Electron Emission caused by Ion Impact

Energy loss of ions in metals close to a surface:

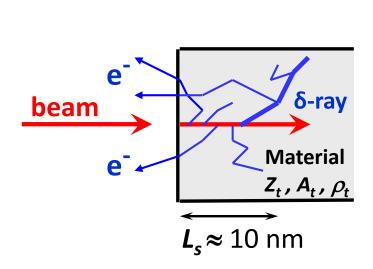
Closed collision with large energy transfer: \rightarrow fast e with $E_{kin} > 100 \text{ eV}$

Distant collision with low energy transfer \rightarrow slow e⁻ with $E_{kin} \leq 10 \text{ eV}$

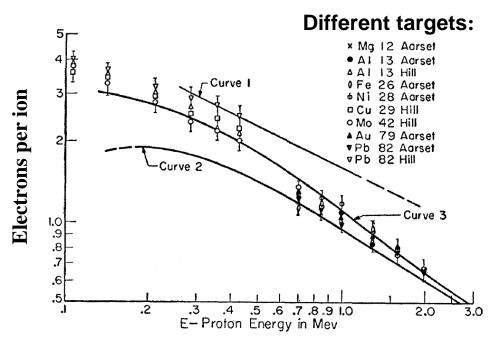
- \rightarrow 'diffusion' & scattering with other e⁻: scattering length $L_s \approx 1$ 10 nm
- \rightarrow at surface \approx 90 % probability for escape

Secondary electron yield and energy distribution comparable for all metals!

$$\Rightarrow$$
 Y = const. * **dE/dx** (Sternglass formula)



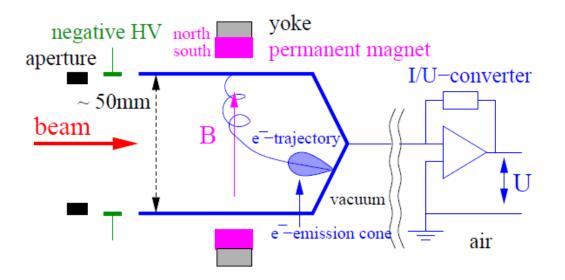
E.J. Sternglass, Phys. Rev. 108, 1 (1957)



Faraday Cups for Beam Charge Measurement

The beam particles are collected inside a metal cup

 \Rightarrow The beam's charge are recorded as a function of time.



Currents down to 10 pA with bandwidth of 100 Hz!

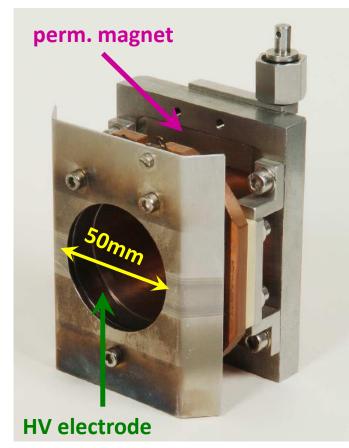
To prevent for secondary electrons leaving the cup

Magnetic field:

The central field is ${\it B}\approx 10~{\rm mT} \Rightarrow r_{\it C}=\frac{m_{\it B}}{e}\cdot v_{\perp}\approx 1~{\rm mm}$.

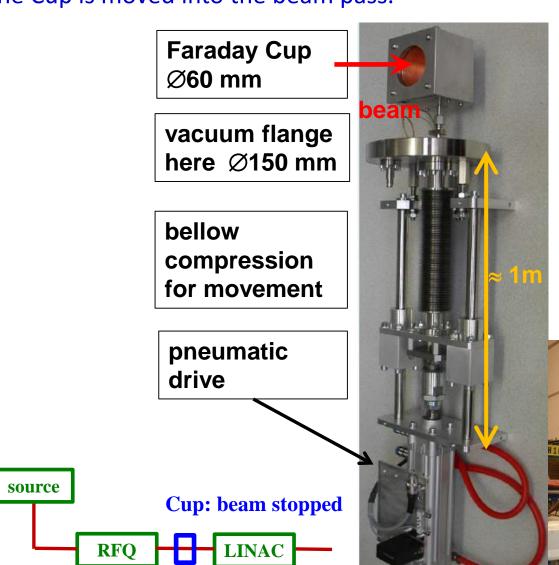
or Electric field: Potential barrier at the cup entrance $U \approx 1$ kV.

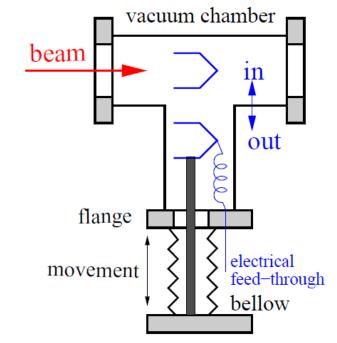
The cup is moved in the beam pass → destructive device



Realization of a Faraday Cup at GSI LINAC

The Cup is moved into the beam pass.





Summary for Current Measurement

Transformer: → measurement of the beam's magnetic field

Magnetic field is guided by a high μ toroid

> Types: FCT \rightarrow large bandwidth, $I_{min} \approx 30 \,\mu\text{A}$, BW = 10 kHz ... 500 MHz

[ACT: $I_{min} \approx 0.3 \,\mu\text{A}$, BW = 10 Hz 1 MHz, used at proton LINACs]

DCCT: two toroids + modulation, $I_{min} \approx 1 \mu A$, BW = dc ... 20 kHz

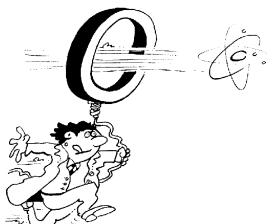
non-destructive, used for all beams

Faraday cup: → measurement of beam's charge,

➤ low threshold by I/U-converter: I_{beam} > 10 pA

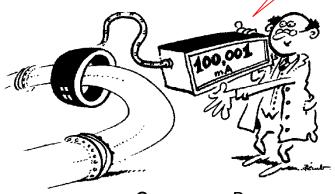
totally destructive, used for low energy beams only

Fast Transformer FCT Active transformer ACT



Resolution limit

DC transformer DCCT



Company Bergoz

Pick-Ups for bunched Beams

Outline:

- ➤ Signal generation → transfer impedance
- Capacitive button BPM for high frequencies
- > Capacitive *linear-cut* BPM for low frequencies
- Electronics for position evaluation
- BPMs for measurement
- Summary

A Beam Position Monitor is an non-destructive device for bunched beams.

It delivers information about the transverse center of the beam:

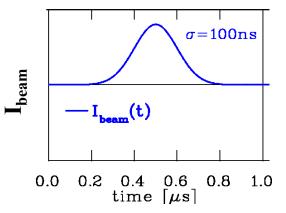
- > Trajectory: Position of an individual bunch within a transfer line or synchrotron
- > Closed orbit: Central orbit averaged over a period much longer than a betatron oscillation
- \succ **Single bunch position:** Determination of parameters like tune, chromaticity, β -function

Remarks: - BPMs have a low cut-off frequency ⇔ dc-beam behavior can't be monitored

- The abbreviation **BPM** and pick-up **PU** are synonyms

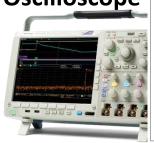
Time Domain ↔ Frequency Domain

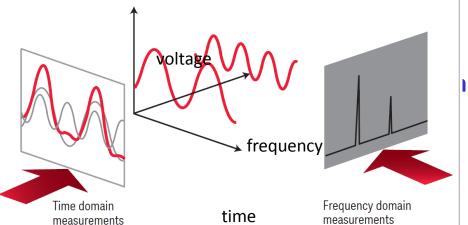
Time domain: Recording of a voltage as a



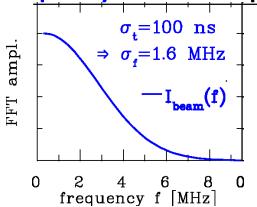
Instrument:

Oscilloscope





Frequency domain: Displaying of a voltage as a function of frequency: courtesy company Keysight



Instrument:

Spectrum Analyzer

Fourier Transformation:

- Contains amplitude & phase
- The same information is displayed differently

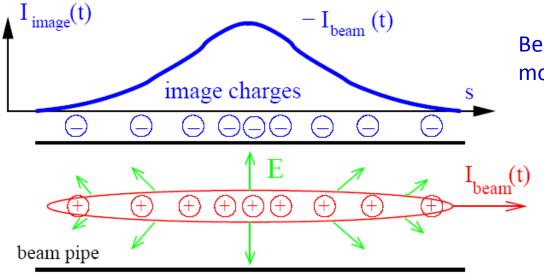
Law of Convolution: For a convolution in time: $f(t) = \int_{-\infty}^{\infty} f_1(\tau) \cdot f_2(t-\tau) d\tau$

$$\Rightarrow \hat{f}(\omega) = \hat{f}_1(\omega) \cdot \hat{f}_2(\omega) \Leftrightarrow \text{convolution be expressed as multiplication of FTs}$$

See lecture 'Time and Frequency Domain Signals' by Hermann Schmickler

Pick-Ups for bunched Beams

The image current at the beam pipe is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.



Beam Position Monitor **BPM** is the most frequently used instrument!

For relativistic velocities, the electric field is transversal:

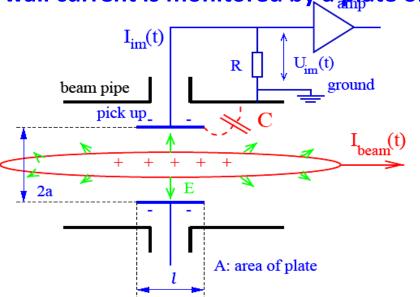
$$E_{\perp,lab}(t) = \gamma \cdot E_{\perp,rest}(t')$$

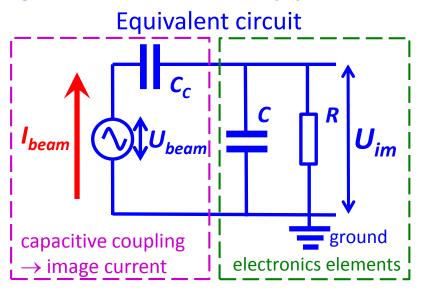
Principle of Signal Generation of a BPMs, centered Beam

The image current at the wall is monitored on a high frequency basis i.e. ac-part given by the bunched beam. Animation by Rhodri Jones (CERN)

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:





At a resistor R the voltage U_{im} from the image current is measured.

Goal: Connection from beam current to signal strength by transfer impedance $Z_t(\omega)$

in frequency domain: $U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega) \cdot I_{beam}(\omega)$

Result:
$$Z_t(\omega) = \frac{A}{2\pi \, a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{i\omega RC}{1+i\omega RC}$$
 $\in \mathbb{C}$ i.e. complex function geometry stray capacitance frequency response

Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM:

$$U_{im}(\omega) = Z_t(\omega) \cdot I_{beam}(\omega)$$

$$|Z_t| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega/\omega_{cut}}{\sqrt{1 + \omega^2/\omega_{cut}^2}}$$

$$\varphi = \arctan(\omega_{cut}/\omega)$$

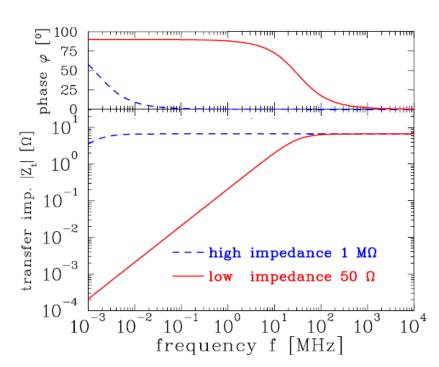
Parameter linear-cut BPM at proton synchr.:

$$C = 100 \text{pF}, I = 10 \text{cm}, \beta = 50\%$$

$$f_{cut} = \omega/2\pi = (2\pi RC)^{-1}$$

for
$$R = 50 \Omega \Rightarrow f_{cut} = 32 \text{ MHz}$$

for
$$R = 1 \text{ M}\Omega \Rightarrow f_{cut} = 1.6 \text{ kHz}$$



Large signal strength for long bunches → high impedance

Smooth signal transmission important for short bunches \rightarrow 50 Ω

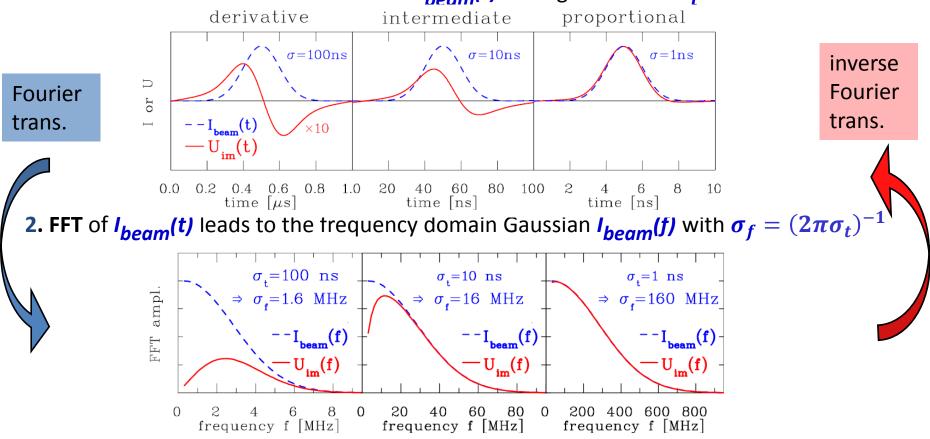
Remark: For $\omega \to 0$ it is $Z_t \to 0$ i.e. **no** signal is transferred from dc-beams e.g.

- ➤ de-bunched beam inside a synchrotron
- for slow extraction through a transfer line

Calculation of Signal Shape (here single Bunch)

The transfer impedance is used in frequency domain! The following is performed:

1. Start: Time domain Gaussian function $I_{beam}(t)$ having a width of σ_t



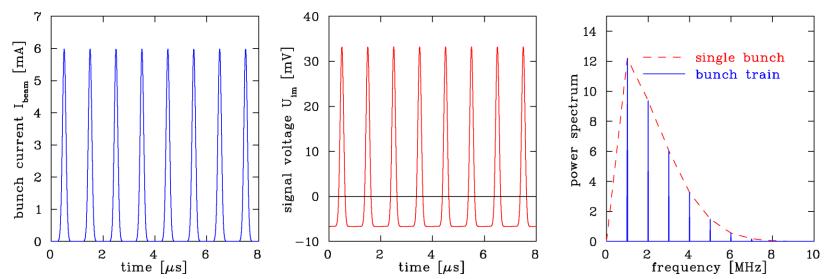
- 3. Multiplication with $Z_t(f)$ with $f_{cut} = 32$ MHz leads to $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 4. Inverse FFT leads to U_{im}(t)

Remark: Time domain processing via convolution or filters (FIR and IIR) are possible

Calculation of Signal Shape: repetitive Bunch in a Synchrotron

Synchrotron filled with 8 bunches accelerated with f_{acc} =1 MHz

BPM terminated with $R=1 \text{ M}\Omega \implies f_{acc} >> f_{cut}$:



Parameter: R = 1 M Ω \Rightarrow f_{cut} = 2 kHz, Z_t = 5 Ω , all buckets filled C=100pF, I=10cm, β =50%, σ_t =100 ns \Rightarrow σ_I =15m

- \succ Fourier spectrum is composed of lines separated by acceleration f_{rf}
- > Envelope given by single bunch Fourier transformation
- > Baseline shift due to ac-coupling

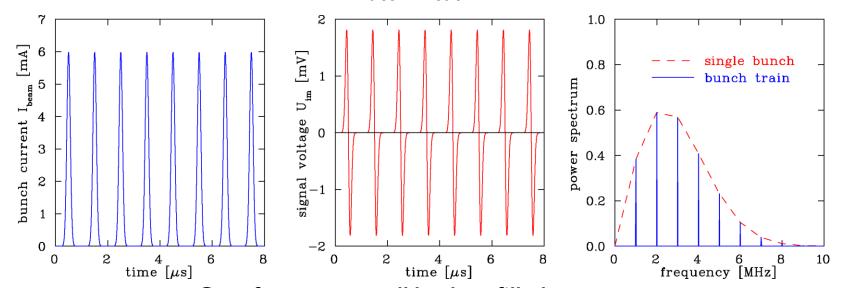
Remark: 1 MHz< f_{rf} <10MHz \Rightarrow Bandwidth \approx 100MHz=10 * f_{rf} for broadband observation

See lecture 'Time and Frequency Domain Signals' by Hermann Schmickler

Calculation of Signal Shape: repetitive Bunch in a Synchrotron

Synchrotron filled with 8 bunches accelerated with f_{acc} = 1 MHz

BPM terminated with $R=50 \Omega \implies f_{acc} << f_{cut}$:



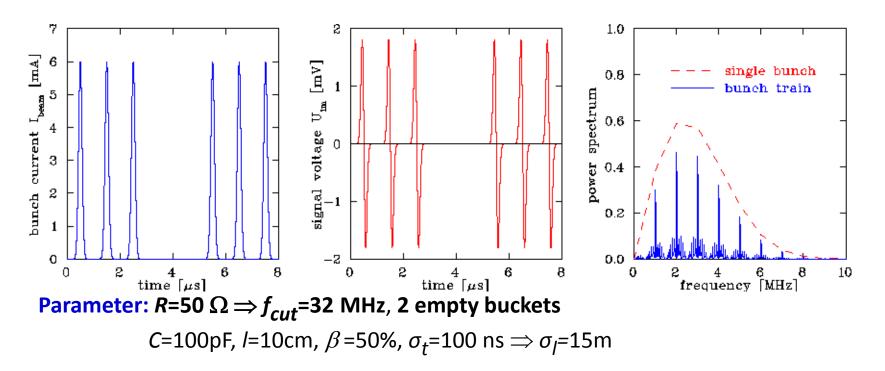
Parameter: R=50 $\Omega \Rightarrow f_{cut}$ =32 MHz, all buckets filled

C=100pF,
$$I$$
=10cm, β =50%, σ_t =100 ns $\Rightarrow \sigma_I$ =15m

- Fourier spectrum is concentrated at acceleration harmonics with single bunch spectrum as an envelope.
- \succ Bandwidth up to typically $10*f_{acc}$

Calculation of Signal Shape: Bunch Train with empty Buckets

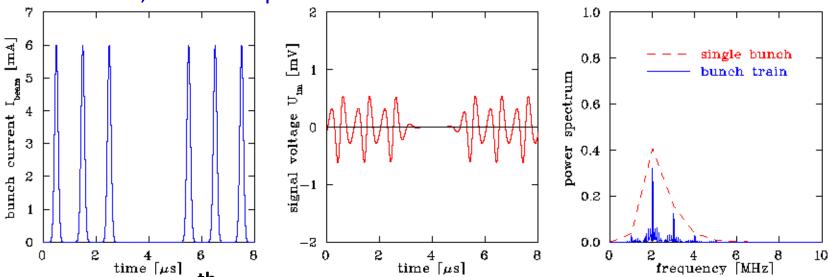
Synchrotron during filling: Empty buckets, R=50 Ω :



Fourier spectrum is more complex, harmonics are broader due to sidebands

Calculation of Signal Shape: Filtering of Harmonics

Effect of filters, here bandpass:



Parameter: $R=50 \Omega$, 4^{th} order Butterworth filter at $f_{cut}=2$ MHz

C=100pF, *I*=10cm, θ =50%, σ =100 ns

- Ringing due to sharp cutoff
- ➤ Other filter types more appropriate

nth order Butterworth filter, math. simple, but **not** well suited:

$$|H_{low}| = \frac{1}{\sqrt{1 + (\omega/\omega_{cut})^{2n}}} \quad \text{and} \quad |H_{high}| = \frac{(\omega/\omega_{cut})^n}{\sqrt{1 + (\omega/\omega_{cut})^{2n}}}$$

$$H_{filter} = H_{high} \cdot H_{low}$$

Generally: $Z_{tot}(\omega) = H_{cable}(\omega) \cdot H_{filter}(\omega) \cdot H_{amp}(\omega) \cdot ... \cdot Z_t(\omega)$

Remark: For numerical calculations, time domain filters (FIR and IIR) are more appropriate

Principle of Signal Generation of a BPMs: off-center Beam

The image current at the wall is monitored on a high frequency basis i.e. ac-part given by the bunched beam. Animation by Rhodri Jones (CERN)

Principle of Position Determination by a BPM

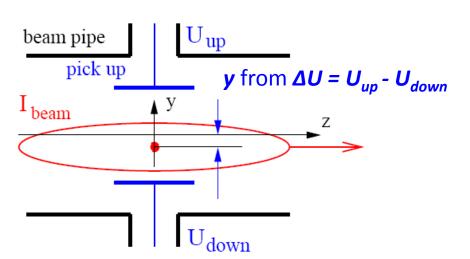
The difference voltage between plates gives the beam's center-of-mass

→most frequent application

$$y = \frac{1}{S_{y}(\omega)} \cdot \frac{U_{up} - U_{down}}{U_{up} + U_{down}} + \delta_{y}(\omega)$$

$$\equiv \frac{1}{S_{y}} \cdot \frac{\Delta U_{y}}{\Sigma U_{y}} + \delta_{y}$$

$$x = \frac{1}{S_{x}(\omega)} \cdot \frac{U_{right} - U_{left}}{U_{right} + U_{left}} + \delta_{x}(\omega)$$



 $S(\omega,x)$ is called **position sensitivity**, sometimes the inverse is used $k(\omega,x)=1/S(\omega,x)$

S is a geometry dependent, non-linear function,

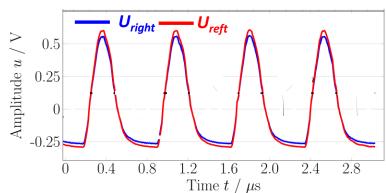
Units: S = [%/mm], sometimes S = [dB/mm] or k = [mm].

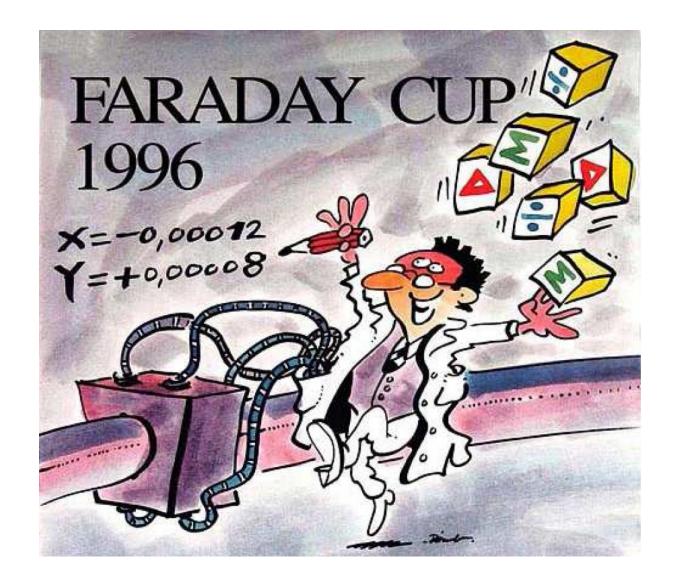
Example: One turn = 4 bunches @ 35 MeV/u

Typical desired position resolution:

 $\Delta x \approx 0.1 \dots 0.3 \cdot \sigma_x$ of beam width

It is at least: $\Delta U \ll \frac{1}{10} \Sigma U$





Pick-Ups for bunched Beams

Outline:

- ➤ Signal generation → transfer impedance
- Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
- > Capacitive *linear-cut* BPM for low frequencies
- Electronics for position evaluation
- > BPMs for measurement of closed orbit, tune and further lattice functions
- Summary

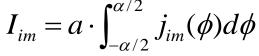
2-dim Model for a Button BPM

'Proximity effect': larger signal for closer plate

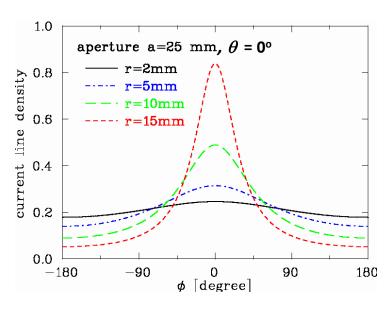
Ideal 2-dim model: Cylindrical pipe \rightarrow image current density

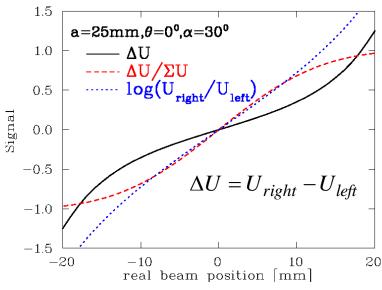
via 'image charge method' for 'pencil' beam:

$$j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)} \right)$$



button





2-dim Model for a Button BPM

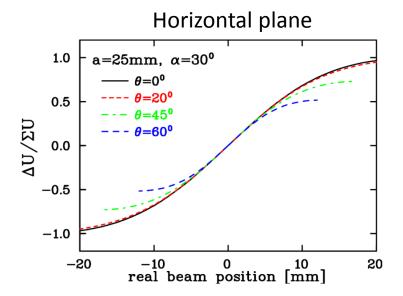
Ideal 2-dim model: Non-linear behavior and hor-vert coupling:

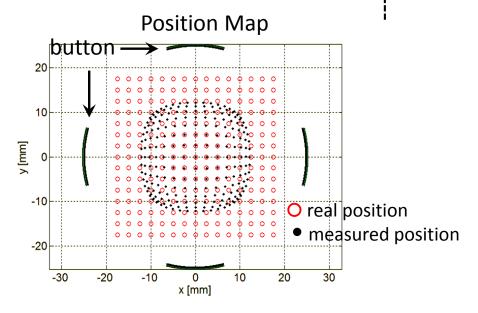
Sensitivity **S** is converts signal to position $x = \frac{1}{S} \cdot \frac{\Delta U}{\Sigma U}$

with S [%/mm] or [dB/mm]

i.e. **S** is the derivative of the curve $S_x = \frac{\partial (\frac{\Delta U}{\Sigma U})}{\partial x}$, here $S_x = S_x(x, y)$ i.e. non-linear.

For this example: central part $S=7.4\%/\text{mm} \Leftrightarrow k=1/S=14\text{mm}$





button

Button BPM Realization

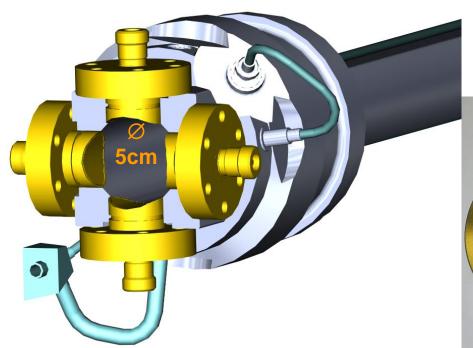
LINACs, e⁻-synchrotrons: 100 MHz $< f_{rf} <$ 3 GHz \rightarrow bunch length \approx BPM length

 \rightarrow 50 Ω signal path to prevent reflections

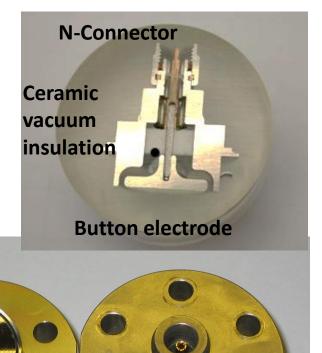
Example: LHC-type inside cryostat:

 \emptyset 24 mm, half aperture a = 25 mm, C = 8 pF

 \Rightarrow f_{cut} = 400 MHz, Z_t = 1.3 Ω above f_{cut}



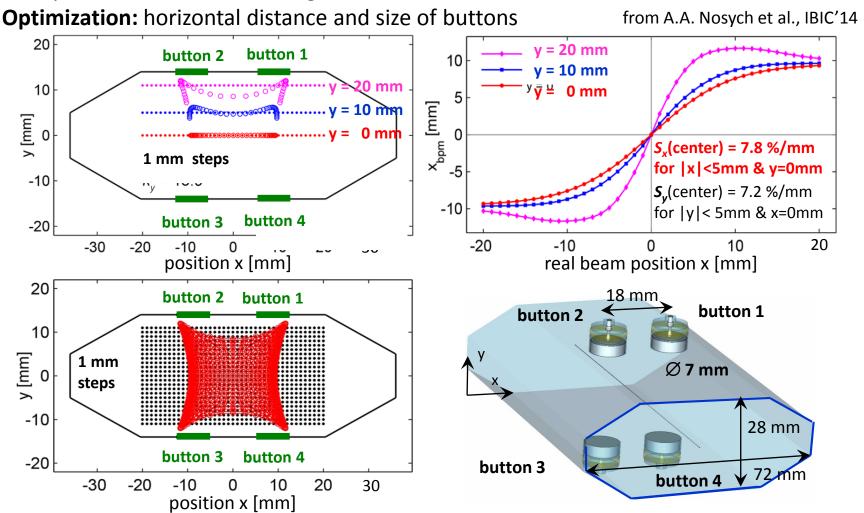
Courtesy C. Boccard (CERN)



Ø24 mm

Simulations for Button BPM at Synchrotron Light Sources

Example: Simulation for ALBA light source for 72 x 28 mm² chamber



Result: non-linearity and xy-coupling occur in dependence of button size and position

Pick-Ups for bunched Beams

Outline:

- ➤ Signal generation → transfer impedance
- Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
- Capacitive linear-cut BPM for low frequencies used at most proton synchrotrons due to linear position reading
- Electronics for position evaluation
- > BPMs for measurement of closed orbit, tune and further lattice functions
- Summary

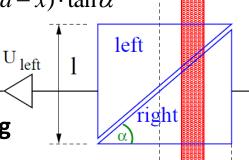
Linear-cut BPM for Proton Synchrotrons

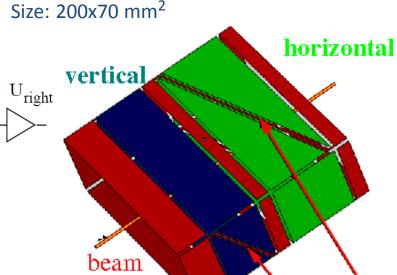
Frequency range: 1 MHz $< f_{rf} <$ 100 MHz \Rightarrow bunch-length >> BPM length.

$$l_{\text{right}} = (a+x) \cdot \tan \alpha, \quad l_{\text{left}} = (a-x) \cdot \tan \alpha$$

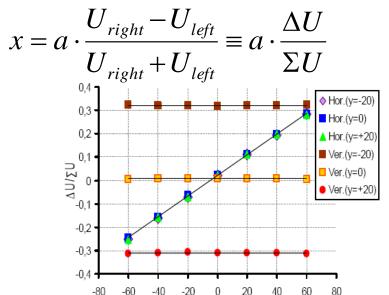
$$l_{\text{right}} - l_{\text{left}}$$

 $\Rightarrow x = a \cdot \frac{l_{\text{right}} - l_{\text{left}}}{l_{\text{right}} + l_{\text{left}}} \qquad \qquad U_{\text{left}} \qquad 1$





In ideal case: linear reading



beam position [mm]

Linear-cut BPM:

beam

Advantage: Linear, i.e. constant position sensitivity S

⇔ no beam size dependence

Disadvantage: Large size, complex mechanics

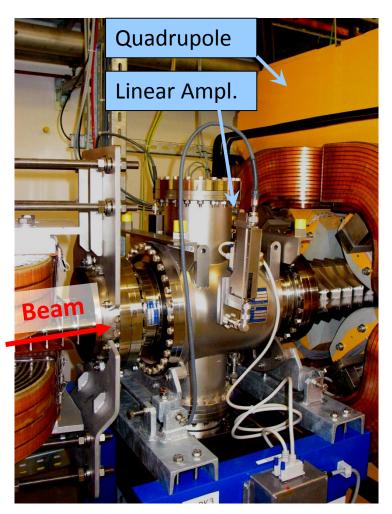
high capacitance

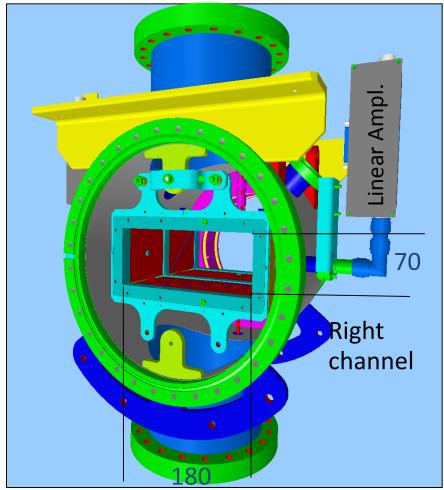
guard rings on

ground potential

Technical Realization of a linear-cut BPM

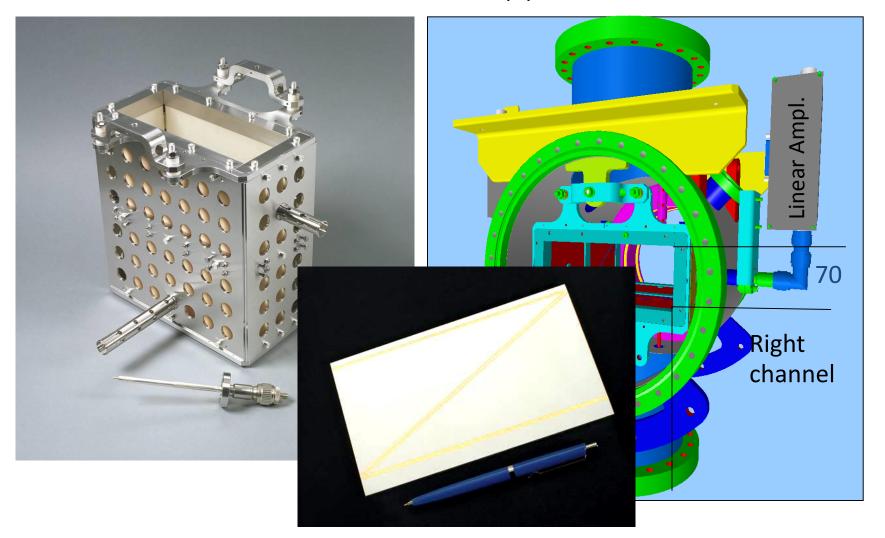
Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.





Technical Realization of a linear-cut BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.



Comparison linear-cut and Button BPM

	Linear-cut BPM	Button BPM	
Precaution	Bunches longer than BPM	Bunch length comparable to BPM	
BPM length (typical)	10 to 20 cm length per plane	\varnothing 1 to 5 cm per button	
Shape	Rectangular or cut cylinder	Orthogonal or planar orientation	
Bandwidth (typical)	0.1 to 100 MHz	100 MHz to 5 GHz	
Coupling	1 M Ω or ≈1 k Ω (transformer)	50 Ω	
Cutoff frequency (typical)	0.01 10 MHz (<i>C</i> =30100pF)	0.3 1 GHz (<i>C</i> =210pF)	
Linearity	Very good, no x-y coupling	Non-linear, x-y coupling	
Sensitivity	Good, care: plate cross talk	Good, care: signal matching	
Usage	At proton synchrotrons,	All electron acc., proton Linacs, f_{rf}	
	f_{rf} < 10 MHz vertical	> 100 MHz	

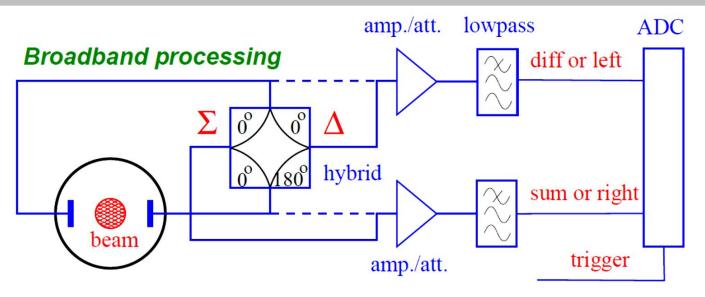
Remark: Other types are also some time used: e.g. wall current monitors, inductive antenna, BPMs with external resonator, cavity BPM, slotted wave-guides for stochastic cooling etc.

Pick-Ups for bunched Beams

Outline:

- ➤ Signal generation → transfer impedance
- Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
- Capacitive linear-cut BPM for low frequencies used at most proton synchrotrons due to linear position reading
- Electronics for position evaluation analog signal conditioning to achieve small signal processing
- > BPMs for measurement of closed orbit, tune and further lattice functions
- Summary

Broadband Signal Processing



- \succ Hybrid or transformer close to beam pipe for analog $\Delta U \& \Sigma U$ generation or $U_{left} \& U_{right}$
- Attenuator/amplifier
- > Filter to get the wanted harmonics and to suppress stray signals
- ightharpoonup ADC: digitalization ightharpoonup followed by calculation of of $\Delta U/\Sigma U$

Advantage: Bunch-by-bunch observation possible, versatile post-processing possible

Disadvantage: Resolution down to \approx 100 µm for shoe box type , i.e. \approx 0.1% of aperture,

resolution is worse than narrowband processing, see below

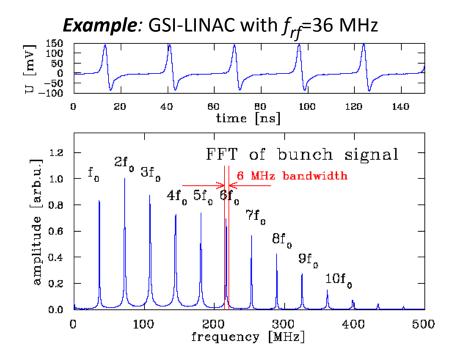
Challenge: Precise analog electronics with very low drift of amplification etc.

General: Noise Consideration

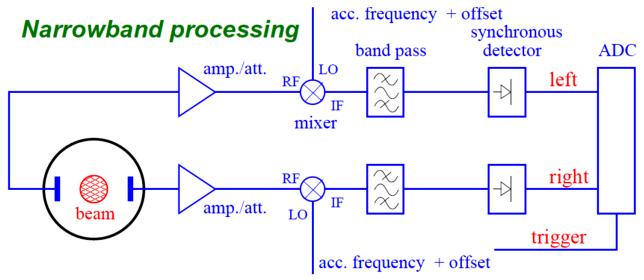
- 1. Signal voltage given by: $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 2. Position information from voltage difference: $\chi = 1/S \cdot \Delta U/\Sigma U$
- 3. Thermal noise voltage given by: $U_{noise}(R,\Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$

Signal-to-noise $\Delta U_{im}/U_{noise}$ is influenced by:

- > Input signal amplitude
- Thermal noise from amplifiers etc.
- ➤ Bandwidth **Δf**
- \Rightarrow Restriction of frequency width as the power is concentrated at harm. \mathbf{nf}_{rf}



Narrowband Processing for improved Signal-to-Noise



Narrowband processing equals heterodyne receiver (e.g. AM-radio or spectrum analyzer)

- > Attenuator/amplifier
- ightharpoonup Mixing with accelerating frequency f_{rf} \Longrightarrow signal with difference frequency
- ➤ Bandpass filter of the mixed signal (e.g at 10.7 MHz)
- ➤ Rectifier: synchronous detector
- \triangleright ADC: digitalization \rightarrow followed calculation of $\Delta U/\Sigma U$

Advantage: Spatial resolution about 100 time better than broadband processing

Disadvantage: No turn-by-turn diagnosis, due to mixing = 'long averaging time'

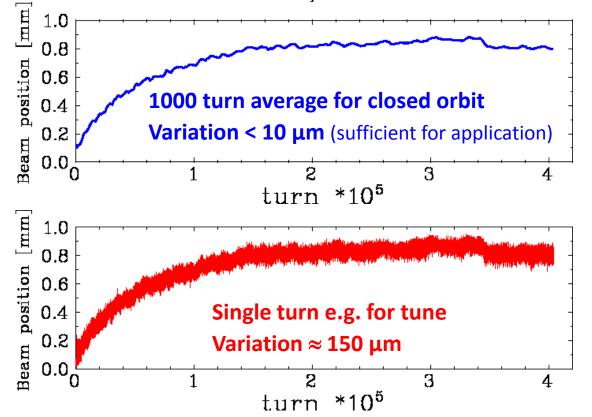
Digital

correspondence:

I/Q demodulation

Comparison: Filtered Signal ↔ **Single Turn**

Example: GSI Synchr.: U^{73+} , $E_{inj} = 11.5$ MeV/u $\rightarrow E_{out} = 250$ MeV/u within 0.5 s, 10^9 ions



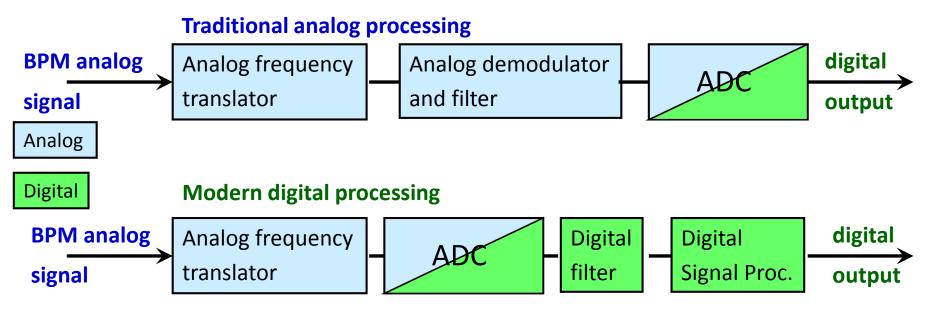
- Position resolution < 30 μm(BPM diameter d=180 mm)
- average over 1000 turns corresponding to ≈1 ms
 or ≈1 kHz bandwidth

➤ Turn-by-turn data have much larger variation

However: Not only noise contributes but additionally **beam movement** by betatron oscillation ⇒ broadband processing i.e. turn-by-turn readout for tune determination.

Analog versus Digital Signal Processing

Modern instrumentation uses **digital** techniques with extended functionality.



Digital receiver as modern successor of super heterodyne receiver

- Basic functionality is preserved but implementation is very different
- Digital transition just after the amplifier & filter or mixing unit
- Signal conditioning (filter, decimation, averaging) on FPGA

Advantage of DSP: Versatile operation, flexible adoption without hardware modification **Disadvantage of DSP: non**, good engineering skill requires for development, expensive

Comparison of BPM Readout Electronics (simplified)

Туре	Usage	Precaution	Advantage	Disadvantage
Broadband	p-sychr.	Long bunches	Bunch structure signal Post-processing possible Required for transfer lines with few bunches	Resolution limited by noise
Narrowband	all synchr.	Stable beams >100 rf-periods	High resolution	No turn-by-turn Complex electronics
Digital Signal Processing	all	ADC sample typ. 250 MS/s	Very flexible & versatile High resolution Trendsetting technology for future demands	Basically non! Limited time resolution by ADC → under-sampling Man-power intensive

Pick-Ups for bunched Beams

Outline:

- ➤ Signal generation → transfer impedance
- Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
- Capacitive linear-cut BPM for low frequencies used at most proton synchrotrons due to linear position reading
- Electronics for position evaluation analog signal conditioning to achieve small signal processing
- ➤ BPMs for measurement of closed orbit, tune and further lattice functions frequent application of BPMs
- > Summary

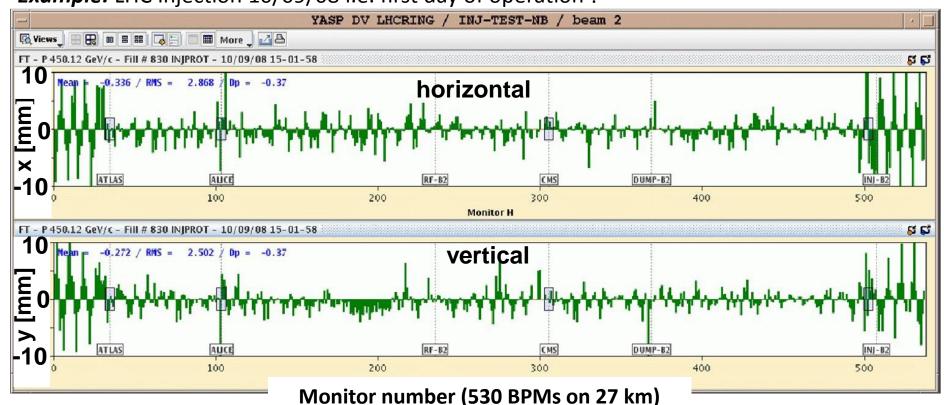
Trajectory Measurement with BPMs

Trajectory:

The position delivered by an individual bunch within a transfer line or a synchrotron.

Main task: Control of matching (center and angle), first-turn diagnostics

Example: LHC injection 10/09/08 i.e. first day of operation!



Courtesy R. Jones (CERN)

Tune values at LHC: $Q_h = 64.3$, $Q_v = 59.3$

Closed Orbit Feedback: Typical Noise Sources

Short term (min to 10 ms):

≻Traffic

- ➤ Machine (crane) movements
- ➤ Water & vacuum pumps
- > 50 Hz main power net

Medium term (day to min):

- ➤ Movement of chambers due to heating by radiation
- ➤ Day-night variation
- > tide, moon cycle

Long term (> days):

- ➤Ground settlement
- ➤ Seasons, temperature variation

Cycling Booster operation mains +harmonics Thermal effects Frequency (Hz 10-2 10-1 10 10² **10**3 Time Period (s) 10-2 10-1 10⁻³ 102 open-loop data Power spectral density [mm²/Hz Open and Closed Loop PSD closed-loop data interp. of open-loop data Model fitted to measurement 0.01 0.1 10 100 1000 frequency [Hz]

Ground vibrations

Courtesy M. Böge, PSI, N. Hubert, Soleil

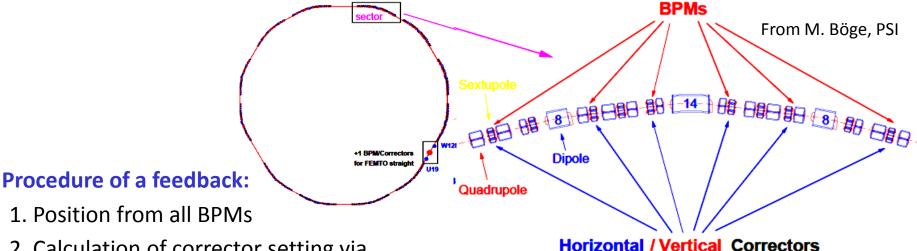
Experimental hall activities

Insertion Devices

Close Orbit Feedback: BPMs and magnetic Corrector Hardware

Orbit feedback: Synchrotron light source \rightarrow spatial stability of light beam

Example: SLS-Synchrotron at Villigen, Switzerland



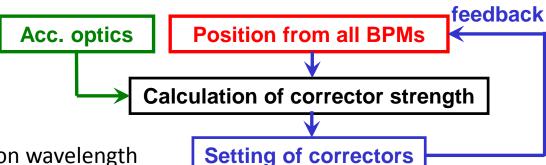
1. Position from all BPMs

2. Calculation of corrector setting via Orbit Response Matrix

- 3. Change of magnet setting
- 1.' New positon measurement
- \Rightarrow regulation time down to 10 ms
- \Rightarrow Role od thumb: \approx 4 BPMs per betatron wavelength

Uncorrected orbit: typ. $\langle x \rangle_{rms} \approx 1 \text{ mm}$

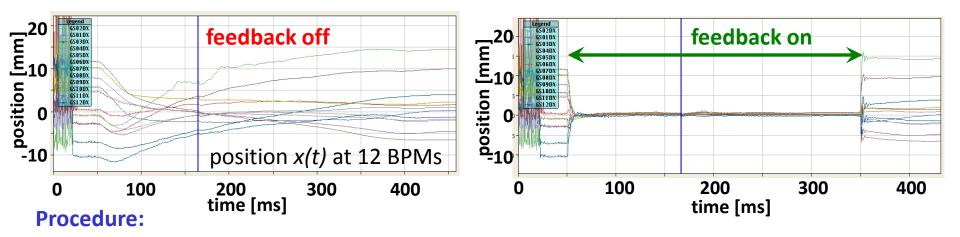
Corrected orbit: typ. $\langle x \rangle_{rms} \approx 1 \, \mu \text{m}$ up to $\approx 100 \, \text{Hz}$ bandwidth!



Close Orbit Feedback: Results

Orbit feedback:

Example: 12 beam positions at GSI-SIS during ramping from 8.6 to 500 MeV/u for Ar¹⁸⁺



- 1. Position from all 12 BPMs
- 2. Calculation of corrector setting on fast (FPGA-based) electronics
- **3.** Submission to corrector magnets
- **4.** New position measurement
- \Rightarrow regulation time down to 10 ms

Role of thumb:

Movement related to tune i.e. 'natural oscillations by periodic focusing'

To determine the 'sine-like' oscillation 4 BPMs per oscillation are required

 \Rightarrow 4 BPMs per tune value (but detailed investigation required to determine the # of BPMs)

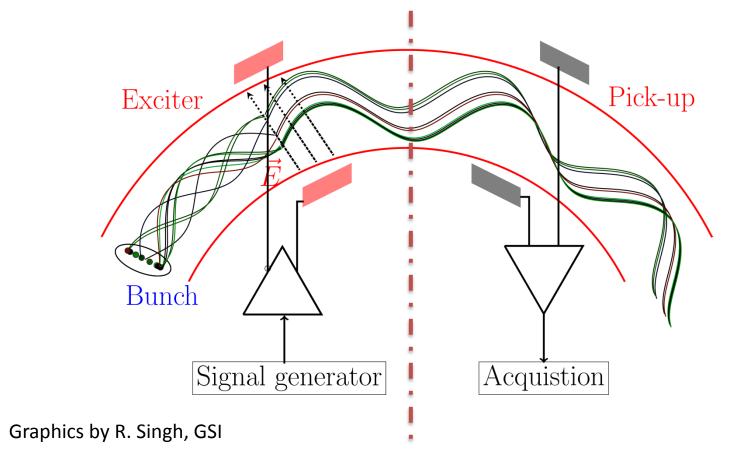
Tune Measurement: General Considerations

Coherent excitations are required for the detection by a BPM

Beam particle's *in-coherent* motion \Rightarrow center-of-mass stays constant

Excitation of **all** particles by rf \Rightarrow **coherent** motion

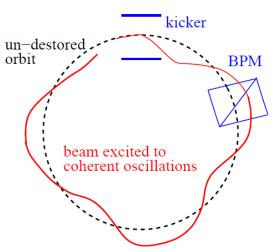
⇒ center-of-mass variation turn-by-turn i.e. center acts as **one** macro-particle

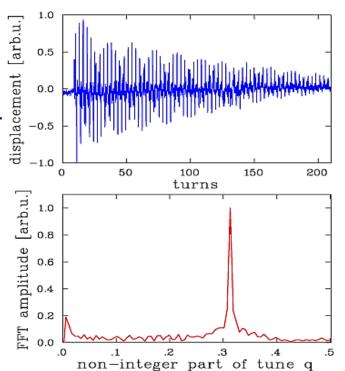


Tune Measurement: The Kick-Method in Time Domain

The beam is excited to **coherent** betatron oscillation

- → Beam position measured each revolution ('turn-by-turn')
- \rightarrow Fourier Trans. gives the non-integer tune q. Short kick compared to revolution.



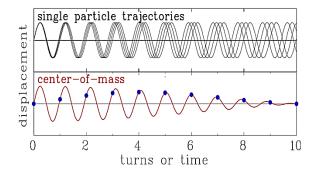


The de-coherence time limits the **resolution**:

N non-zero samples

 \Rightarrow General limit of discrete FFT:

Here: $N = 200 \text{ turn} \Rightarrow \Delta q > 0.003$ (tune spreads can be $\Delta q \approx 0.001!$)

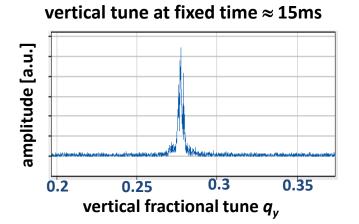


Decay is caused by de-phasing, **not** by decreasing single particle amplitude.

Tune Measurement: Gentle Excitation with Wideband Noise

Instead of a sine wave, noise with adequate bandwidth can be applied

- → beam picks out its resonance frequency:
- ightharpoonup Broadband excitation with white noise of \approx 10 kHz bandwidth
- > Turn-by-turn position measurement
- > Fourier transformation of the recorded data
- ⇒ Continues monitoring with low disturbance

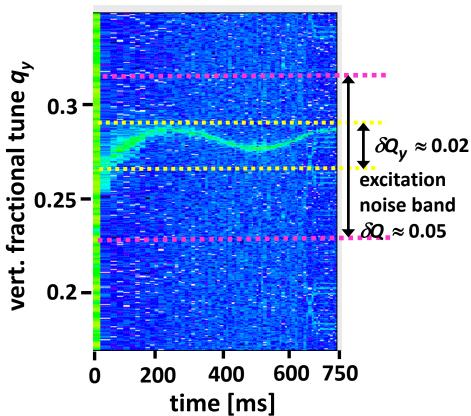


Advantage:

Fast scan with good time resolution

U. Rauch et al., DIPAC 2009

Example: Vertical tune within 4096 turn duration $\simeq 15$ ms at GSI synchrotron $11 \rightarrow 300$ MeV/u in 0.7 s vertical tune versus time



Chromaticity Measurement from Closed Orbit Data

Chromaticity ξ: Change of tune for off-momentum particle

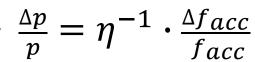
Two step measurement procedure:

- 1. Change of momentum p by detuned rf-frequency
- 2. Excitation of coherent betatron oscillations and tune measurement (kick-method, BTF, noise excitation):

Plot of $\Delta Q/Q$ as a function of $\Delta p/p$

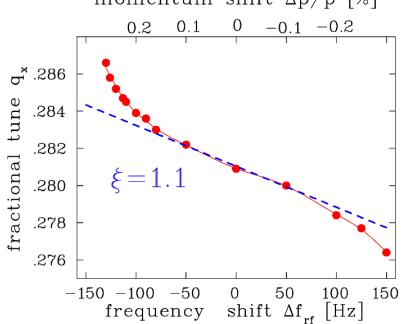
 \Rightarrow slope is dispersion ξ .

From M Minty, F. Zimmermann, Measurement and Control of charged Particle Beam, Springer Verlag 2003



Example: Measurement at LEP:

momentum shift $\Delta p/p |\%|$



→ Conclusion

β -Function Measurement from Bunch-by-Bunch BPM Data

Excitation of **coherent** betatron oscillations:

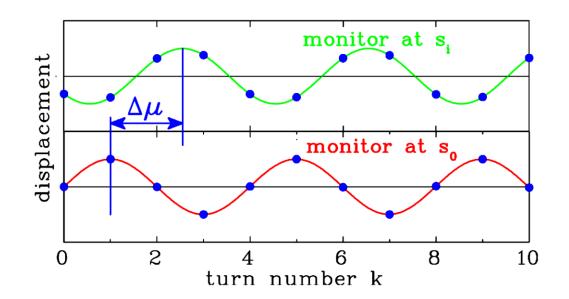
→ Time-dependent position reading results the phase advance between BPMs

The phase advance is:

$$\Delta \mu = \mu_i - \mu_0$$

β-function from

$$\Delta \mu = \int_{S0}^{Si} \frac{ds}{\beta(s)}$$



→Conclusion

Remark: Determination of β -function with 3 BPMs:

$$\beta_{meas}(BPM_1) = \beta_{model}(BPM_1) \cdot \frac{\cot[\mu_{meas}(1 \to 2)] - \cot[\mu_{meas}(1 \to 3)]}{\cot[\mu_{model}(1 \to 2)] - \cot[\mu_{model}(1 \to 3)]}$$

See e.g.: R. Tomas et al., Phys. Rev. Acc. Beams **20**, 054801 (2017)

A. Wegscheider et al., Phys. Rev. Acc. Beams 20, 111002 (2017)

'Beta-beating' from Bunch-by-Bunch BPM Data

Example: 'Beta-beating' at BPM $\Delta \beta = \beta_{meas} - \beta_{model}$ with measured β_{meas} & calculated β_{model} for each BPM at BNL for RHIC (proton-proton or ions circular collider with 3.8 km length)

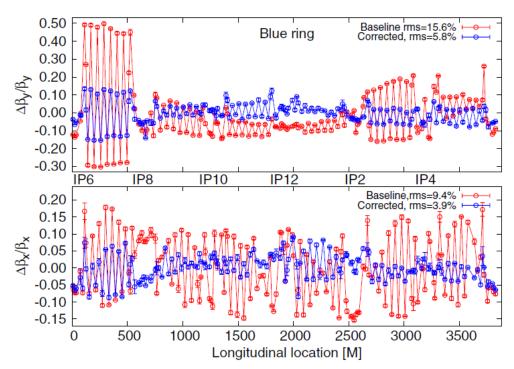
Result concerning 'beta-beating':

- Model doesn't fit reality completely e.g. caused by misalignments
- Corrections executed
- Increase of the luminosity

Remark:

Measurement accuracy depends on

- BPM accuracy
- Numerical evaluation method



From X. Shen et al., Phys. Rev. Acc. Beams 16, 111001 (2013)

See lecture 'Imperfections and Corrections' by Volker Ziemann

Intra-Bunch Observation

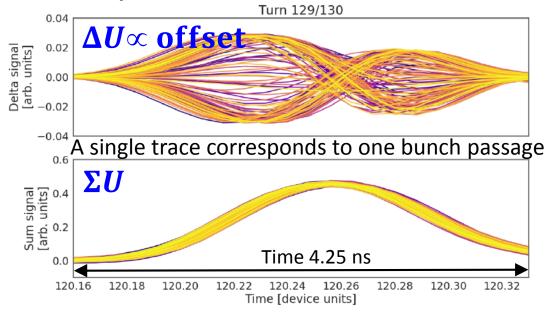
High band-width measurements delivers:

- \triangleright Bunch shape given by the sum $\Sigma U(t) = U_{right}(t) + U_{left}(t)$ of two plates
- ightharpoonup Intra-bunch movement of the **center** by $x_{center}(t) \propto \Delta U(t) = U_{right}(t) U_{left}(t)$

Example: Single bunch observation on turn-by-turn basis with beam excitation at SPS

Goal: Monitoring instabilities

See lecture 'Collective Effects' by Kevin Li



(a) Headtail mode 1 for chromaticity $\xi = 0.2$

Courtesy Kevin Li, CAS Proceedings 2021

Summary Pick-Ups for bunched Beams

The electric field is monitored for bunched beams using rf-technologies ('frequency domain'). Beside transformers they are the most often used instruments!

Differentiated or proportional signal: rf-bandwidth ↔ beam parameters

Proton synchrotron: 1 to 100 MHz, mostly 1 M Ω \rightarrow proportional shape

LINAC, e⁻-synchrotron: 0.1 to 3 GHz, 50 Ω \rightarrow differentiated shape

Important quantity: Transfer impedance $Z_t(\omega, \beta)$.

Types of capacitive pick-ups:

Linear-cut (p-synch.), button (p-LINAC, e⁻-LINAC and synch.)

Position reading: Difference signal of two or four pick-up plates (BPM):

- ightharpoonup Non-intercepting reading of center-of-mass ightharpoonup online measurement and control **Synchrotron: Fast** reading, **'bunch-by-bunch'** ightharpoonup trajectory, **slow** reading ightharpoonup closed orbit
- \succ Synchrotron: Excitation of coherent betatron oscillations \Rightarrow tune q, ξ , $\beta(s)$, D(s)...

Remark: BPMs have high pass characteristic ⇒ no signal for dc-beams

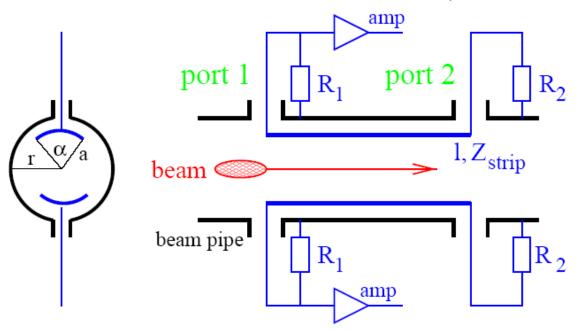
Thank you for your attention!

Backup slides

Stripline BPM: General Idea

For short bunches, the *capacitive* button deforms the signal

- \rightarrow Relativistic beam $\beta \approx 1 \Rightarrow$ field of bunches nearly TEM wave
- → Bunch's electro-magnetic field induces a **traveling pulse** at the strips
- \rightarrow Assumption: Bunch shorter than BPM, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$



LHC stripline BPM, *I* = 12 cm

From C. Boccard, CERN

Stripline BPM: General Idea

For relativistic beam with $\beta \approx 1$ and short bunches:

- → Bunch's electro-magnetic field induces a **traveling pulse** at the strip
- \rightarrow **Assumption:** $l_{bunch} << l$, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$

Signal treatment at upstream port 1:

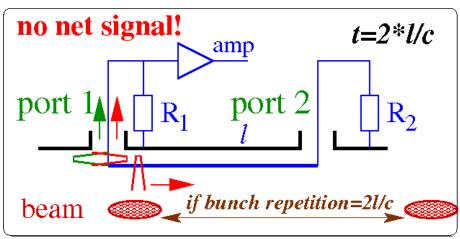
t=0: Beam induced charges at **port 1**:

 \rightarrow half to R_1 , half toward port 2

t=l/c: Beam induced charges at **port 2**:

- \rightarrow half to R_2 , **but** due to different sign, it cancels with the signal from **port 1**
- → half signal reflected

t=2·l/c: reflected signal reaches port 1



$$\Rightarrow U_1(t) = \frac{1}{2} \cdot \frac{\alpha}{2\pi} \cdot Z_{strip} \left(I_{beam}(t) - I_{beam}(t - 2l/c) \right)$$

If beam repetition time equals 2·I/c: reflected preceding port 2 signal cancels the new one:

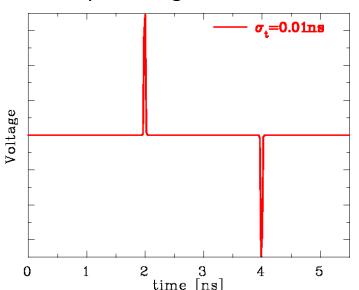
- → no net signal at **port 1**
- Signal at downstream port 2: Beam induced charges cancel with traveling charge from port 1
- ⇒ Signal depends on direction ⇔ can distinguish between counter-propagation beams

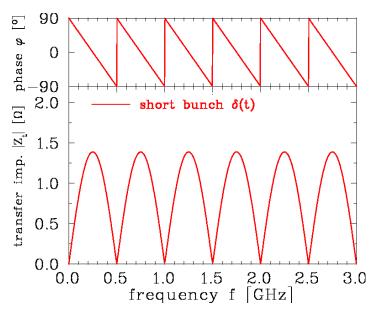
Stripline BPM: Transfer Impedance

The signal from port 1 and the reflection from port 2 can cancel \Rightarrow minima in Z_t .

For short bunches $I_{beam}(t) \rightarrow Ne \cdot \delta(t)$: $Z_t(\omega) = Z_{strip} \cdot \frac{\alpha}{2\pi} \cdot \sin(\omega l/c) \cdot e^{i(\pi/2 - \omega l/c)}$

Stripline length I=30 cm, $\alpha=10^{\circ}$





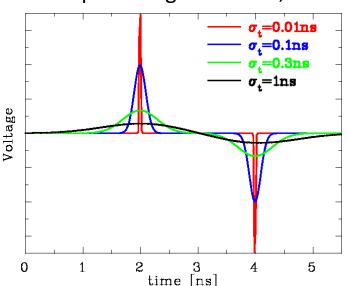
- > Z_t show maximum at $I=c/4f=\lambda/4$ i.e. 'quarter wave coupler' for bunch train $\Rightarrow I$ has to be matched to v_{beam}
- \triangleright No signal for $l=c/2f=\lambda/2$ i.e. destructive interference with **subsequent** bunch
- \triangleright Around maximum of $|Z_t|$: phase shift $\varphi=0$ i.e. direct image of bunch
- $F_{center} = 1/4 \cdot c/l \cdot (2n-1)$. For first lope: $f_{low} = 1/2 \cdot f_{center}$, $f_{high} = 3/2 \cdot f_{center}$ i.e. bandwidth $\approx 1/2 \cdot f_{center}$
- \triangleright Precise matching at feed-through required to preserve 50 Ω matching.

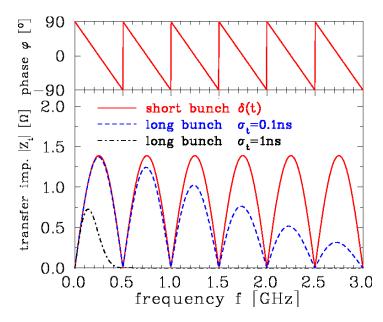
Stripline BPM: Transfer Impedance

The signal from port 1 and the reflection from port 2 can cancel \Rightarrow minima in Z_t .

For bunches of length
$$\sigma$$
: $\Rightarrow Z_t(\omega) = Z_{strip} \cdot \frac{\alpha}{2\pi} \cdot e^{-\omega^2 \sigma^2/2} \cdot \sin(\omega l/c) \cdot e^{i(\pi/2 - \omega l/c)}$

Stripline length I=30 cm, $\alpha=10^{\circ}$

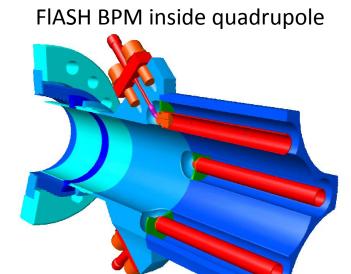




- $> Z_t(\omega)$ decreases for higher frequencies
- ightharpoonup If total bunch is too long $\pm 3\sigma_t > I$ destructive interference leads to signal damping **Cure:** length of stripline has to be matched to bunch length

Comparison: Stripline and Button BPM (simplified)

	Stripline	Button
Idea	traveling wave	electro-static
Requirement	Careful $Z_{strip} = 50 \Omega$ matching	
Signal quality	Less deformation of bunch signal	Deformation by finite size and capacitance
Bandwidth	Broadband, but minima	Highpass, but f_{cut} < 1 GHz
Signal strength	Large Large longitudinal and transverse coverage possible	Small Size <∅3cm, to prevent signal deformation
Mechanics	Complex	Simple
Installation	Inside quadrupole possible ⇒improving accuracy	Compact insertion
Directivity	YES	No

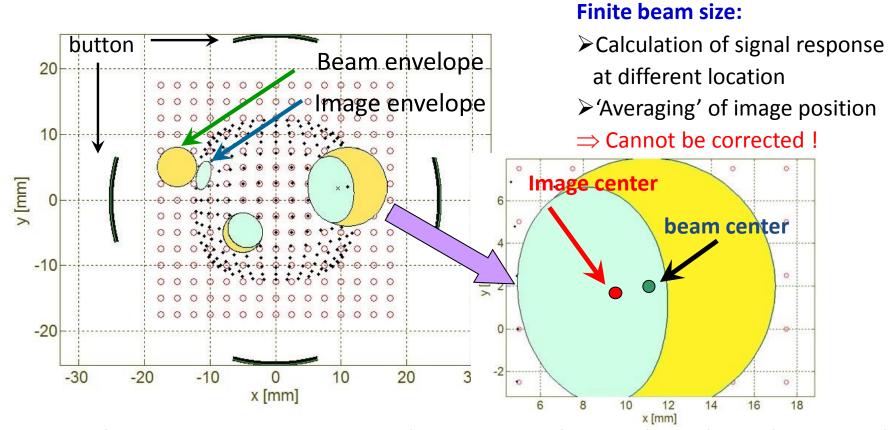


From . S. Vilkins, D. Nölle (DESY)

Estimation of finite Beam Size Effect for Button BPM

Ideal 2-dim model:

Due to the non-linearity, the beam size enters in the position reading.



Remark: For most LINACs: Linearity is less important, because beam has to be centered Position correction as feed-forward for next macro-pulse.