Particle motion in Hamiltonian Formalism II

Or how to derive and solve equations of motion

Yannis PAPAPHILIPPOU

Accelerator and Beam Physics group
Beams Department
CERN
CERN Accelerator School
Introduction to Accelerator Physics
Everness Hotel, Chavannes de Bogis, Switzerland September $25^{\text {th }}-$ October $8^{\text {th }}, 2021$

Copyright statement and speaker's release for video publishing

- The author consents to the photographic, audio and video recording of this lecture at the CERN Accelerator School. The term "lecture" includes any material incorporated therein including but not limited to text, images and references.
■ The author hereby grants CERN a royalty-free license to use his image and name as well as the recordings mentioned above, in order to post them on the CAS website.
- The author hereby confirms that to his best knowledge the content of the lecture does not infringe the copyright, intellectual property or privacy rights of any third party. The author has cited and credited any third-party contribution in accordance with applicable professional standards and legislation in matters of attribution. Nevertheless the material represent entirely standard teaching material known for more than ten years. Naturally some figures will look alike those produced by other teachers.
- $2^{\text {nd }}$ order dif. equations of motion from Newton's law (in configuration space) can be solved by transforming them to pairs of $1^{\text {st }}$ order dif. equations (in phase space)
■ Natural appearance of invariant of motion ("energy")
- Non-linear oscillators have frequencies which depend on the invariant (or "amplitude")
■ Connected invariant of motion to system's Hamiltonian (derived through Lagrangian)
\square Shown that through the Hamiltonian, the equations of motions can be derived
- Poisson bracket operators are helpful for discovering integrals of motion

Canonical transformations

Canonical Transformations

\square Find a function for transforming the Hamiltonian from variable (\mathbf{q}, \mathbf{p}) to (\mathbf{Q}, \mathbf{P}), so system becomes simpler to study
Transformation should be canonical (or symplectic), so that Hamiltonian properties (phase-space volume) are preserved
\square Find a function for transforming the Hamiltonian from variable (\mathbf{q}, \mathbf{p}) to (\mathbf{Q}, \mathbf{P}), so system becomes simpler to study
\square Transformation should be canonical (or symplectic), so that Hamiltonian properties (phase-space volume) are preserved
These "mixed variable" generating functions are derived by

$$
\begin{aligned}
& F_{1}(\mathbf{q}, \mathbf{Q}): p_{i}=\frac{\partial F_{1}}{\partial q_{i}}, \quad P_{i}=-\frac{\partial F_{1}}{\partial Q_{i}} \quad F_{3}(\mathbf{Q}, \mathbf{p}): q_{i}=-\frac{\partial F_{3}}{\partial p_{i}}, \quad P_{i}=-\frac{\partial F_{3}}{\partial Q_{i}} \\
& F_{2}(\mathbf{q}, \mathbf{P}): p_{i}=\frac{\partial F_{2}}{\partial q_{i}}, \quad Q_{i}=\frac{\partial F_{2}}{\partial P_{i}} \quad F_{4}(\mathbf{p}, \mathbf{P}): q_{i}=-\frac{\partial F_{4}}{\partial p_{i}}, Q_{i}=\frac{\partial F_{4}}{\partial P_{i}}
\end{aligned}
$$

A general non-autonomous Hamiltonian is transformed to

$$
H(\mathbf{Q}, \mathbf{P}, t)=H(\mathbf{q}, \mathbf{p}, t)+\frac{\partial F_{j}}{\partial t}, j=1,2,3,4
$$

\square Find a function for transforming the Hamiltonian from variable (\mathbf{q}, \mathbf{p}) to (\mathbf{Q}, \mathbf{P}), so system becomes simpler to study
Transformation should be canonical (or symplectic), so that Hamiltonian properties (phase-space volume) are preserved
These "mixed variable" generating functions are derived by

$$
\begin{aligned}
& F_{1}(\mathbf{q}, \mathbf{Q}): p_{i}=\frac{\partial F_{1}}{\partial q_{i}}, \quad P_{i}=-\frac{\partial F_{1}}{\partial Q_{i}} \quad F_{3}(\mathbf{Q}, \mathbf{p}): q_{i}=-\frac{\partial F_{3}}{\partial p_{i}}, \quad P_{i}=-\frac{\partial F_{3}}{\partial Q_{i}} \\
& F_{2}(\mathbf{q}, \mathbf{P}): p_{i}=\frac{\partial F_{2}}{\partial q_{i}}, \quad Q_{i}=\frac{\partial F_{2}}{\partial P_{i}} \quad F_{4}(\mathbf{p}, \mathbf{P}): q_{i}=-\frac{\partial F_{4}}{\partial p_{i}}, \quad Q_{i}=\frac{\partial F_{4}}{\partial P_{i}}
\end{aligned}
$$

[A general non-autonomous Hamiltonian is transformed to

$$
H(\mathbf{Q}, \mathbf{P}, t)=H(\mathbf{q}, \mathbf{p}, t)+\frac{\partial F_{j}}{\partial t}, \quad j=1,2,3,4
$$

\square One generating function can be constructed by the other through Legendre transformations, e.g.
$F_{2}(\mathbf{q}, \mathbf{P})=F_{1}(\mathbf{q}, \mathbf{Q})-\mathbf{Q} \cdot \mathbf{P}, \quad F_{3}(\mathbf{Q}, \mathbf{p})=F_{1}(\mathbf{q}, \mathbf{Q})-\mathbf{q} \cdot \mathbf{p}$, with the inner product define as $\mathbf{q} \cdot \mathbf{p}=\sum q_{i} p_{i}$

Preservation of Phase

A fundamental property of canonical transformations is the preservation of phase space volume
This volume preservation in phase space can be represented in the old and new variables as

$$
\int \prod_{i=1}^{n} d p_{i} d q_{i}=\int \prod_{i=1}^{n} d P_{i} d Q_{i}
$$

A fundamental property of canonical transformations is the preservation of phase space volume
This volume preservation in phase space can be represented in the old and new variables as

$$
\int \prod_{i=1}^{n} d p_{i} d q_{i}=\int \prod_{i=1}^{n} d P_{i} d Q_{i}
$$

The volume element in old and new variables are related through the Jacobian

$$
\prod_{i=1}^{n} d p_{i} d q_{i}=\frac{\partial\left(P_{1}, \ldots, P_{n}, Q_{1}, \ldots, Q_{n}\right)}{\partial\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right)} \prod_{i=1}^{n} d P_{i} d Q_{i}
$$

A fundamental property of canonical transformations is the preservation of phase space volume
This volume preservation in phase space can be represented in the old and new variables as

$$
\int \prod_{i=1}^{n} d p_{i} d q_{i}=\int \prod_{i=1}^{n} d P_{i} d Q_{i}
$$

The volume element in old and new variables are related through the Jacobian

$$
\prod_{i=1}^{n} d p_{i} d q_{i}=\frac{\partial\left(P_{1}, \ldots, P_{n}, Q_{1}, \ldots, Q_{n}\right)}{\partial\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right)} \prod_{i=1}^{n} d P_{i} d Q_{i}
$$

These two relationships imply that the Jacobian of a canonical transformation should have determinant equal to 1
$\left|\frac{\partial\left(P_{1}, \ldots, P_{n}, Q_{1}, \ldots, Q_{n}\right)}{\partial\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right)}\right|=\left|\frac{\partial\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right)}{\partial\left(P_{1}, \ldots, P_{n}, Q_{1}, \ldots, Q_{n}\right)}\right|=\frac{1}{10}$

The transformation $Q=-p, P=q$, which interchanges conjugate variables is area preserving, as the Jacobian is

$$
\frac{\partial(P, Q)}{\partial(p, q)}=\left|\begin{array}{ll}
\frac{\partial P}{\partial p} & \frac{\partial Q}{\partial p} \\
\frac{\partial P}{\partial q} & \frac{\partial Q}{\partial q}
\end{array}\right|=\left|\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right|=1
$$

The transformation $Q=-p, P=q$, which interchanges conjugate variables is area preserving, as the Jacobian is

$$
\frac{\partial(P, Q)}{\partial(p, q)}=\left|\begin{array}{ll}
\frac{\partial P}{\partial p} & \frac{\partial Q}{\partial p} \\
\frac{\partial P}{\partial q} & \frac{\partial Q}{\partial q}
\end{array}\right|=\left|\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right|=1
$$

\square On the other hand, the transformation from Cartesian to polar coordinates $q=P \cos Q, \quad p=P \sin Q$ is not, since

$$
\frac{\partial(q, p)}{\partial(Q, P)}=\left|\begin{array}{cc}
-P \sin Q & P \cos Q \\
\cos Q & \sin Q
\end{array}\right|=-P
$$ conjugate variables is area preserving, as the Jacobian is

$$
\frac{\partial(P, Q)}{\partial(p, q)}=\left|\begin{array}{ll}
\frac{\partial P}{\partial p} & \frac{\partial Q}{\partial p} \\
\frac{\partial P}{\partial q} & \frac{\partial Q}{\partial q}
\end{array}\right|=\left|\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right|=1
$$

O On the other hand, the transformation from Cartesian to polar coordinates $q=P \cos Q, \quad p=P \sin Q$ is not, since

$$
\frac{\partial(q, p)}{\partial(Q, P)}=\left|\begin{array}{cc}
-P \sin Q & P \cos Q \\
\cos Q & \sin Q
\end{array}\right|=-P
$$

There are actually "polar" coordinates that are canonical, given by $q=-\sqrt{2 P} \cos Q, \quad p=\sqrt{2 P} \sin Q \quad$ for which

$$
\frac{\partial(q, p)}{\partial(Q, P)}=\left|\begin{array}{cc}
\sqrt{2 P} \sin Q & \sqrt{2 P} \cos Q \\
-\frac{\cos Q}{\sqrt{2 P}} & \frac{\sin Q}{\sqrt{2 P}}
\end{array}\right|=1
$$

The Relativistic Hamiltonian for electromagnetic fields

\square Neglecting self fields and radiation, motion can be described by a "single-particle" Hamiltonian

$$
\begin{aligned}
H(\mathbf{x}, \mathbf{p}, t) & =c \sqrt{\left(\mathbf{p}-\frac{e}{c} \mathbf{A}(\mathbf{x}, t)\right)^{2}+m^{2} c^{2}}+e \Phi(\mathbf{x}, t) \\
\square \mathbf{x}=(x, y, z) & \text { Cartesian positions } \\
\square \mathbf{p}=\left(p_{x}, p_{y}, p_{z}\right) & \text { conjugate momenta } \\
\square \mathbf{A}=\left(A_{x}, A_{y}, A_{z}\right) & \text { magnetic vector potential } \\
\square \Phi & \text { electric scalar potential }
\end{aligned}
$$

\square Neglecting self fields and radiation, motion can be described by a "single-particle" Hamiltonian

$$
\begin{aligned}
H(\mathbf{x}, \mathbf{p}, t) & =c \sqrt{\left(\mathbf{p}-\frac{e}{c} \mathbf{A}(\mathbf{x}, t)\right)^{2}+m^{2} c^{2}}+e \Phi(\mathbf{x}, t) \\
\square \mathbf{x}=(x, y, z) & \text { Cartesian positions } \\
\square \mathbf{p}=\left(p_{x}, p_{y}, p_{z}\right) & \text { conjugate momenta } \\
\square \mathbf{A}=\left(A_{x}, A_{y}, A_{z}\right) & \text { magnetic vector potential } \\
\square \Phi & \text { electric scalar potential }
\end{aligned}
$$

The ordinary kinetic momentum vector is written

$$
\mathbf{P}=\gamma m \mathbf{v}=\mathbf{p}-\frac{e}{c} \mathbf{A}
$$

with \mathbf{V} the velocity vector and $\gamma=\left(1-v^{2} / c^{2}\right)^{-1 / 2}$ the relativistic factor

Single-particle relativistic Hamiltonian

$$
H(\mathbf{x}, \mathbf{p}, t)=c \sqrt{\left(\mathbf{p}-\frac{e}{c} \mathbf{A}(\mathbf{x}, t)\right)^{2}+m^{2} c^{2}}+e \Phi(\mathbf{x}, t)
$$

It is generally a 3 degrees of freedom one plus time (i.e., 4 degrees of freedom)

- The Hamiltonian represents the total energy

$$
H \equiv E=\gamma m c^{2}+e \Phi
$$

$$
H(\mathbf{x}, \mathbf{p}, t)=c \sqrt{\left(\mathbf{p}-\frac{e}{c} \mathbf{A}(\mathbf{x}, t)\right)^{2}+m^{2} c^{2}}+e \Phi(\mathbf{x}, t)
$$

\square It is generally a 3 degrees of freedom one plus time (i.e., 4 degrees of freedom)

- The Hamiltonian represents the total energy

$$
H \equiv E=\gamma m c^{2}+e \Phi
$$

- The total kinetic momentum is

$$
P=\left(\frac{H^{2}}{c^{2}}-m^{2} c^{2}\right)^{1 / 2}
$$

\square Using Hamilton's equations

$$
(\dot{\mathbf{x}}, \dot{\mathbf{p}})=[(\mathbf{x}, \mathbf{p}), H]
$$

it can be shown that motion is governed by Lorentz equations

From Cartesian to "curved"

\square It is useful (especially for rings) to transform the Cartesian coordinate system to the Frenet-Serret system moving
 to a closed curve, with path length S
\square The position coordinates in the two systems are connected by $\mathbf{r}=\mathbf{r}_{\mathbf{0}}(s)+X \mathbf{n}(s)+Y \mathbf{b}(s)=x \mathbf{u}_{\mathbf{x}}+y \mathbf{u}_{\mathbf{y}}+z \mathbf{u}_{\mathbf{z}}$

From Cartesian to

\square It is useful (especially for rings) to transform the Cartesian coordinate system to the Frenet-Serret system moving
 to a closed curve, with path length S
\square The position coordinates in the two systems are connected by $\mathbf{r}=\mathbf{r}_{\mathbf{0}}(s)+X \mathbf{n}(s)+Y \mathbf{b}(s)=x \mathbf{u}_{\mathbf{x}}+y \mathbf{u}_{\mathbf{y}}+z \mathbf{u}_{\mathbf{z}}$
The Frenet-Serret unit vectors and their derivatives are defined as $(\mathbf{t}, \mathbf{n}, \mathbf{b})=\left(\frac{d}{d s} \mathbf{r}_{\mathbf{0}}(s),-\rho(s) \frac{d^{2}}{d s^{2}} \mathbf{r}_{\mathbf{0}}(s), \mathbf{t} \times \mathbf{n}\right)$

$$
\frac{d}{d s}\left(\begin{array}{l}
\mathbf{t} \\
\mathbf{n} \\
\mathbf{b}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -\frac{1}{\rho(s)} & 0 \\
\frac{1}{\rho(s)} & 0 & -\tau(s) \\
0 & 0 & \tau(s)
\end{array}\right)\left(\begin{array}{l}
\mathbf{t} \\
\mathbf{n} \\
\mathbf{b}
\end{array}\right)
$$

with $\rho(s)$ the radius of curvature and $\tau(s)$ the torsion which vanishes in case of planar motion
$\square W e$ are seeking a canonical transformation between

$$
\begin{aligned}
(\mathbf{q}, \mathbf{p}) & \mapsto(\mathbf{Q}, \mathbf{P}) \text { or } \\
\left(x, y, z, p_{x}, p_{y}, p_{z}\right) & \mapsto\left(X, Y, s, P_{x}, P_{y}, P_{s}\right)
\end{aligned}
$$

\square The generating function is

$$
(\mathbf{q}, \mathbf{P})=-\left(\frac{\partial F_{3}(\mathbf{p}, \mathbf{Q})}{\partial \mathbf{p}}, \frac{\partial F_{3}(\mathbf{p}, \mathbf{Q})}{\partial \mathbf{Q}}\right)
$$

\square By using the relationship for the positions,

$$
\mathbf{r}=\mathbf{r}_{\mathbf{0}}(s)+X \mathbf{n}(s)+Y \mathbf{b}(s)=x \mathbf{u}_{\mathbf{x}}+y \mathbf{u}_{\mathbf{y}}+z \mathbf{u}_{\mathbf{z}}
$$

the generating function is

$$
F_{3}(\mathbf{p}, \mathbf{Q})=-\mathbf{p} \cdot \mathbf{r}
$$

From Cartesian to "curved" planar motion, the momenta are

$$
\mathbf{P}=\left(P_{X}, P_{Y}, P_{s}\right)=\mathbf{p} \cdot\left(\frac{\partial F_{3}}{\partial X}, \frac{\partial F_{3}}{\partial Y}, \frac{\partial F_{3}}{\partial s}\right)=\mathbf{p} \cdot\left(\mathbf{n}, \mathbf{b},\left(1+\frac{X}{\rho}\right) \mathbf{t}\right)
$$

Taking into account that the vector potential is also transformed in the same way

$$
\left(A_{X}, A_{Y}, A_{s}\right)=\mathbf{A} \cdot\left(\mathbf{n}, \mathbf{b},\left(1+\frac{X}{\rho}\right) \mathbf{t}\right)
$$

the new Hamiltonian is given by
$\mathcal{H}(\mathbf{Q}, \mathbf{P}, t)=c \sqrt{\left(P_{X}-\frac{e}{c} A_{X}\right)^{2}+\left(P_{Y}-\frac{e}{c} A_{Y}\right)^{2}+\frac{\left(P_{s}-\frac{e}{c} A_{s}\right)^{2}}{\left(1+\frac{X}{\rho(s)}\right)^{2}}+m^{2} c^{2}}+e \Phi$
\square It is more convenient to use the path length s, instead of the time as independent variable
\square The Hamiltonian can be considered as having 4 degrees of freedom, where the $4^{\text {th }}$ "position" is time and its conjugate momentum is $P_{t}=-\mathcal{H}$

It is more convenient to use the path length s, instead of the time as independent variable
\square The Hamiltonian can be considered as having 4 degrees of freedom, where the $4^{\text {th }}$ "position" is time and its conjugate momentum is $P_{t}=-\mathcal{H}$
\square In the same way, the new Hamiltonian with the path length as the independent variable is just $P_{s}=-\tilde{\mathcal{H}}\left(X, Y, t, P_{X}, P_{Y}, P_{t}, s\right)$ with
$\tilde{\mathcal{H}}=-\frac{e}{c} A_{s}-\left(1+\frac{X}{\rho(s)}\right) \sqrt{\left(\frac{P_{t}+e \Phi}{c}\right)^{2}-m^{2} c^{2}-\left(P_{x}-\frac{e}{c} A_{X}\right)^{2}-\left(P_{Y}-\frac{e}{c} A_{Y}\right)^{2}}$
\square It can be proved that this is indeed a canonical transformation
\square Note the existence of the reference orbit for zero vector potential, for which $\left(X, Y, P_{X}, P_{Y}, P_{s}\right)=\left(0,0,0,0, P_{0}\right)_{24}$

Neglecting electric fields

\square Due to the fact that longitudinal (synchrotron) motion is much slower than the transverse (betatron) one, the electric field can be set to zero and the Hamiltonian is written as

$$
\left.\tilde{\mathcal{H}}=-\frac{e}{c} A_{s}-\left(1+\frac{X}{\rho(s)}\right) \sqrt{P^{2}} \sqrt{\left(\frac{\mathcal{H}}{c}\right)^{2}-m^{2} c^{2}}-\left(P_{x}-\frac{e}{c} A_{X}\right)^{2}-\left(P_{Y}-\frac{e}{c} A_{Y}\right)^{2}\right)
$$

\square Due to the fact that longitudinal (synchrotron) motion is much slower than the transverse (betatron) one, the electric field can be set to zero and the Hamiltonian is written as

$$
\tilde{\mathcal{H}}=-\frac{e}{c} A_{s}-\left(1+\frac{X}{\rho(s)}\right) \sqrt{P^{2}} \sqrt{\underbrace{}_{\mathcal{H}_{c}})^{2}-m^{2} c^{2}}-\left(P_{x}-\frac{e}{c} A_{X}\right)^{2}-\left(P_{Y}-\frac{e}{c} A_{Y}\right)^{2}) .
$$

\square The Hamiltonian is then written as
$\tilde{\mathcal{H}}=-\frac{e}{c} A_{s}-\left(1+\frac{X}{\rho(s)}\right) \sqrt{\left(P^{2}-\left(P_{x}-\frac{e}{c} A_{X}\right)^{2}-\left(P_{Y}-\frac{e}{c} A_{Y}\right)^{2}\right.}$
\square If static magnetic fields are considered, the time dependence is also dropped, and the system is having 2 degrees of freedom + "time" (path length)
\square Due to the fact that total momentum is much larger than the transverse ones, another transformation may be considered, where the transverse momenta are rescaled

$$
\begin{aligned}
(\mathbf{Q}, \mathbf{P}) & \mapsto(\overline{\mathbf{q}}, \overline{\mathbf{p}}) \text { or } \\
\left(X, Y, t, P_{X}, P_{Y}, P_{t}\right) & \mapsto\left(\bar{x}, \bar{y}, \bar{t}, \bar{p}_{x}, \bar{p}_{y}, \bar{p}_{t}\right)=\left(X, Y,-c t, \frac{P_{X}}{P_{0}}, \frac{P_{Y}}{P_{0}},-\frac{P_{t}}{P_{0} c}\right)
\end{aligned}
$$

\square Due to the fact that total momentum is much larger than the transverse ones, another transformation may be considered, where the transverse momenta are rescaled

$$
\begin{aligned}
(\mathbf{Q}, \mathbf{P}) & \mapsto(\overline{\mathbf{q}}, \overline{\mathbf{p}}) \text { or } \\
\left(X, Y, t, P_{X}, P_{Y}, P_{t}\right) & \mapsto\left(\bar{x}, \bar{y}, \bar{t}, \bar{p}_{x}, \bar{p}_{y}, \bar{p}_{t}\right)=\left(X, Y,-c t, \frac{P_{X}}{P_{0}}, \frac{P_{Y}}{P_{0}},-\frac{P_{t}}{P_{0} c}\right)
\end{aligned}
$$

The new variables are indeed canonical if the Hamiltonian is also rescaled and written as

$$
\overline{\mathcal{H}}\left(\bar{x}, \bar{y}, \overline{\bar{y}} \overline{\bar{p}}_{x}, \bar{p}_{y}, \bar{p}_{t}\right)=\frac{\tilde{\mathcal{H}}}{P_{0}}=-e \bar{A}_{s}-\left(1+\frac{\bar{x}}{\rho(s)}\right) \sqrt{\bar{p}_{t}^{2}-\frac{m^{2} c^{2}}{P_{0}}-\left(\bar{p}_{x}-e \bar{A}_{x}\right)^{2}-\left(\bar{p}_{y}-e \bar{A}_{y}\right)^{2}}
$$

with $\quad\left(\bar{A}_{x}, \bar{A}_{y}, \bar{A}_{z}\right)=\frac{1}{P_{0} c}\left(\hat{A}_{x}, \hat{A}_{y}, \hat{A}_{s}\right)$
and $\quad \frac{m^{2} c^{2}}{P_{0}}=\frac{1}{\beta_{0}^{2} \gamma_{0}^{2}}$
\square Along the reference trajectory $\quad \bar{p}_{t 0}=\frac{1}{\beta_{0}} \quad$ and $\left.\frac{d \bar{t}}{d s}\right|_{P=P_{0}}=\left.\frac{\partial \bar{H}}{\partial \bar{p}_{t}}\right|_{P=P_{0}}=-\bar{p}_{t 0}=-\frac{1}{\beta_{0}}$
\square It is thus useful to move the reference frame to the reference trajectory for which another canonical transformation is performed

$$
(\overline{\mathbf{q}}, \overline{\mathbf{p}}) \quad \mapsto \quad(\hat{\mathbf{q}}, \hat{\mathbf{p}}) \text { or }
$$

$\left(\bar{x}, \bar{y}, \bar{t}, \bar{p}_{x}, \bar{p}_{y}, \bar{p}_{t}\right) \quad \mapsto\left(\hat{x}, \hat{y}, \hat{t}, \hat{p}_{x}, \hat{p}_{y}, \hat{p}_{t}\right)=\left(\bar{x}, \bar{y}, \bar{t}+\frac{s-s_{0}}{\beta_{0}}, \bar{p}_{x}, \bar{p}_{y}, \bar{p}_{t}-\frac{1}{\beta_{0}}\right)$
\square Along the reference trajectory $\quad \bar{p}_{t 0}=\frac{1}{\beta_{0}} \quad$ and $\left.\frac{d \bar{t}}{d s}\right|_{P=P_{0}}=\left.\frac{\partial \bar{H}}{\partial \bar{p}_{t}}\right|_{P=P_{0}}=-\bar{p}_{t 0}=-\frac{1}{\beta_{0}}$
It is thus useful to move the reference frame to the reference trajectory for which another canonical transformation is performed

$$
(\overline{\mathbf{q}}, \overline{\mathbf{p}}) \quad \mapsto \quad(\hat{\mathbf{q}}, \hat{\mathbf{p}}) \text { or }
$$

$\left(\bar{x}, \bar{y}, \bar{t}, \bar{p}_{x}, \bar{p}_{y}, \bar{p}_{t}\right) \quad \mapsto \quad\left(\hat{x}, \hat{y}, \hat{t}, \hat{p}_{x}, \hat{p}_{y}, \hat{p}_{t}\right)=\left(\bar{x}, \bar{y}, \bar{t}+\frac{s-s_{0}}{\beta_{0}}, \bar{p}_{x}, \bar{p}_{y}, \bar{p}_{t}-\frac{1}{\beta_{0}}\right)$
\square The mixed variable generating function is
$(\hat{\mathbf{q}}, \overline{\mathbf{p}})=\left(\frac{\partial F_{2}(\overline{\mathbf{q}}, \hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}}, \frac{\partial F_{2}(\overline{\mathbf{q}}, \hat{\mathbf{p}})}{\partial \overline{\mathbf{q}}}\right)$ providing

$$
\begin{aligned}
& F_{2}(\overline{\mathbf{q}}, \hat{\mathbf{p}})=\bar{x} \hat{p}_{x}+\bar{y} \hat{p}_{y}+\left(\bar{t}+\frac{s-s_{0}}{\beta_{0}}\right)\left(\hat{p}_{t}+\frac{1}{\beta_{0}}\right)
\end{aligned}
$$

\square The Hamiltonian is then
$\hat{\mathcal{H}}\left(\hat{x}, \hat{y}, \hat{t}, \hat{p}_{x}, \hat{p}_{y}, \hat{p}_{t}\right)=\frac{1}{\beta_{0}}\left(\frac{1}{\beta_{0}}+\hat{p}_{t}\right)-e \hat{A}_{s}-\left(1+\frac{\hat{x}}{\rho(s)}\right) \sqrt{\left(\hat{p}_{t}+\frac{1}{\beta_{0}}\right)^{2}-\frac{1}{\beta_{0}^{2} \gamma_{0}^{2}}-\left(\hat{p}_{x}-e \hat{A}_{x}\right)^{2}-\left(\hat{p}_{y}-e \bar{A}_{y}\right)^{2}}$

Relativistic and transverse field approximations

\square First note that $\hat{p}_{t}=\bar{p}_{t}-\frac{1}{\beta_{0}}=\bar{p}_{t}-\bar{p}_{t 0}=\frac{P_{t}-P_{0}}{P_{0}} \equiv \delta$ and $l=\hat{t}$
In the ultra-relativistic limit $\beta_{0} \rightarrow 1, \frac{1}{\beta_{0}^{2} \gamma^{2}} \rightarrow 0$
and the Hamiltonian is written as $\mathcal{H}\left(x, y, l, p_{x}, p_{y}, \delta\right)=(1+\delta)-e \hat{A}_{s}-\left(1+\frac{x}{\rho(s)}\right) \sqrt{(1+\delta)^{2}-\left(p_{x}-e \hat{A}_{x}\right)^{2}-\left(p_{y}-e \hat{A}_{y}\right)^{2}}$ where the "hats" are dropped for simplicity

First note that $\hat{p}_{t}=\bar{p}_{t}-\frac{1}{\beta_{0}}=\bar{p}_{t}-\bar{p}_{t 0}=\frac{P_{t}-P_{0}}{P_{0}} \equiv \delta$ and $l=\hat{t}$
DIn the ultra-relativistic limit $\beta_{0} \rightarrow 1, \frac{1}{\beta_{0}^{2} \gamma^{2}} \rightarrow 0$ where the "hats" are dropped for simplicity
DIf we consider only transverse field components, the vector potential has only a longitudinal component and the Hamiltonian is written as
$\mathcal{H}\left(x, y, l, p_{x}, p_{y}, \delta\right)=(1+\delta)-e \hat{A}_{s}-\left(1+\frac{x}{\rho(s)}\right) \sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}$

- Note that the Hamiltonian is non-linear even in the absence of any field component (i.e. for a drift)!
\square Summary of canonical transformations and approximations
\square From Cartesian to Frenet-Serret (rotating) coordinate system (bending in the horizontal plane)
\square Changing the independent variable from time to the path length s
\square Electric field set to zero, as longitudinal (synchrotron) motion is much slower then transverse (betatron) one
\square Consider static and transverse magnetic fields
\square Rescale the momentum and move the origin to the periodic orbit
\square For the ultra-relativistic limit $\beta_{0} \rightarrow 1, \frac{1}{\beta_{0}^{2} \gamma^{2}} \rightarrow 0$
the Hamiltonian becomes

$$
\mathcal{H}\left(x, y, l, p_{x}, p_{y}, \delta\right)=(1+\delta)-e \hat{A}_{s}-\left(1+\frac{x}{\rho(s)}\right) \sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}
$$

$$
\text { with } \frac{P_{t}-P_{0}}{P_{0}} \equiv \delta
$$

High-energy, large

\square It is useful for study purposes (especially for finding an "integrable" version of the Hamiltonian) to make an extra approximation
\square For this, transverse momenta (rescaled to the reference momentum) are considered to be much smaller than 1, i.e. the square root can be expanded.
\square Considering also the large machine approximation $x \ll \rho$, (dropping cubic terms), the Hamiltonian is simplified to

$$
\mathcal{H}=\frac{p_{x}^{2}+p_{y}^{2}}{2(1+\delta)}-\frac{x(1+\delta)}{\rho(s)}-e \hat{A}_{s}
$$

\square This expansion may not be a good idea, especially for low energy, small size rings

Linear magnetic fields

Assume a simple case of linear transverse magnetic fields,

$$
B_{x}=b_{1}(s) y
$$

$$
B_{y}=-b_{0}(s)+b_{1}(s) x
$$

\square main bending field
\square normalized quadrupole gradient

$$
K(s)=b_{1}(s) \frac{e}{c P_{0}}=\frac{b_{1}(s)}{B \rho}\left[1 / \mathrm{m}^{2}\right]
$$

\square magnetic rigidity

$$
-B_{0} \equiv b_{0}(s)=\frac{P_{0} c}{e \rho(s)}[\mathrm{T}]
$$

$$
B \rho=\frac{P_{0} c}{e}[\mathrm{~T} \cdot \mathrm{~m}]
$$

Assume a simple case of linear transverse magnetic fields,

$$
\begin{aligned}
& B_{x}=b_{1}(s) y \\
& B_{y}=-b_{0}(s)+b_{1}(s) x
\end{aligned}
$$

\square main bending field

$$
-B_{0} \equiv b_{0}(s)=\frac{P_{0} c}{e \rho(s)}[\mathrm{T}]
$$

\square normalized quadrupole gradient
\square magnetic rigidity

$$
K(s)=b_{1}(s) \frac{e}{c P_{0}}=\frac{b_{1}(s)}{B \rho}\left[1 / \mathrm{m}^{2}\right]
$$

$$
B \rho=\frac{P_{0} c}{e}[\mathrm{~T} \cdot \mathrm{~m}]
$$

- The vector potential has only a longitudinal component which in curvilinear coordinates is

$$
B_{x}=-\frac{1}{1+\frac{x}{\rho(s)}} \frac{\partial A_{s}}{\partial y}, \quad B_{y}=\frac{1}{1+\frac{x}{\rho(s)}} \frac{\partial A_{s}}{\partial x}
$$

- The previous expressions can be integrated to give

$$
A_{s}(x, y, s)=\frac{P_{0} c}{e}\left[-\frac{x}{\rho(s)}-\left(\frac{1}{\rho(s)^{2}}+K(s)\right) \frac{x^{2}}{2}+K(s) \frac{y^{2}}{2}\right]=P_{0} c \hat{A}_{s}(x, y, s)
$$

The integrable

The Hamiltonian for linear fields can be finally written as
$\mathcal{H}=\frac{p_{x}^{2}+p_{y}^{2}}{2(1+\delta)}-\frac{x \delta}{\rho(s)}+\frac{x^{2}}{2 \rho(s)^{2}}+\frac{K(s)}{2}\left(x^{2}-y^{2}\right)$

$$
\frac{d x}{d s}=\frac{p_{x}}{1+\delta}, \frac{d p_{x}}{d s}=\frac{\delta}{\rho(s)}-\left(\frac{1}{\rho^{2}(s)}+K(s)\right) x
$$

$$
\frac{d y}{d s}=\frac{p_{y}}{1+\delta}, \frac{d p_{y}}{d s}=K(s) y
$$

and they can be written as two second order uncoupled differential equations, i.e. Hill's equations (see Transverse Dynamics lecture)
$x^{\prime \prime}+\frac{1}{1+\delta}(\overbrace{\frac{1}{\rho(s)^{2}}+K(s)}^{K_{x}}) x=\frac{\delta}{\rho(s)}$
with the usual solution for
$y^{\prime \prime}-\frac{1}{1+\delta} \underbrace{K(s) y=0}_{K_{y}}$ $\delta=0$ and $u=x, y$
$u(s)=\sqrt{\epsilon \beta(s)} \cos \left(\psi(s)+\psi_{0}\right)$
$u^{\prime}(s)=\sqrt{\frac{\epsilon}{\beta(s)}}\left(\sin \left(\psi(s)+\psi_{0}\right)+\alpha(s) \cos \left(\psi(s)+\psi_{0}\right)\right){ }_{37}$

Action-angle variables

- There is a canonical transformation to some optimal set of variables which can simplify the phase-space motion
- This set of variables are the action-angle variables
- The action vector is defined as the integral $\mathbf{J}=\oint \mathbf{p} d \mathbf{q}$
over closed paths in phase space.

Action-angle variables

- There is a canonical transformation to some optimal set of variables which can simplify the phase-space motion
- This set of variables are the action-angle variables

The action vector is defined as the integral $\mathbf{J}=\oint \mathbf{p} d \mathbf{q}$ over closed paths in phase space.

- An integrable Hamiltonian is written as a function of only the actions, i.e. $H_{0}=H_{0}(\mathbf{J})$. Hamilton's equations give $\dot{\phi}_{i}=\frac{\partial H_{0}(\mathbf{J})}{\partial J_{i}}=\omega_{i}(\mathbf{J}) \Rightarrow \phi_{i}=\omega_{i}(\mathbf{J}) t+\phi_{i 0}$ $\dot{J}_{i}=-\frac{\partial H_{0}(\mathbf{J})}{\partial \phi_{i}}=0 \Rightarrow J_{i}=$ const.

i.e. the actions are integrals of motion and the angles are evolving linearly with time, with constant frequencies which depend on the actions
■ The actions define the surface of an invariant torus, topologically equivalent to the product of n circles

■ Considering on-momentum motion, the Hamiltonian can be written as

$$
\mathcal{H}=\frac{p_{x}^{2}+p_{y}^{2}}{2}+\frac{K_{x}(s) x^{2}-K_{y}(s) y^{2}}{2}
$$

- The generating function from the original to action angle variables is
$F_{1}\left(x, y, \phi_{x}, \phi_{y} ; s\right)=-\frac{x^{2}}{2 \beta_{x}(s)}\left[\tan \phi_{x}(s)+a_{x}(s)\right]-\frac{y^{2}}{2 \beta_{y}(s)}\left[\tan \phi_{y}(s)+a_{y}(s)\right]$
- Considering on-momentum motion, the Hamiltonian can be written as

$$
\mathcal{H}=\frac{p_{x}^{2}+p_{y}^{2}}{2}+\frac{K_{x}(s) x^{2}-K_{y}(s) y^{2}}{2}
$$

- The generating function from the original to action angle variables is
$F_{1}\left(x, y, \phi_{x}, \phi_{y} ; s\right)=-\frac{x^{2}}{2 \beta_{x}(s)}\left[\tan \phi_{x}(s)+a_{x}(s)\right]-\frac{y^{2}}{2 \beta_{y}(s)}\left[\tan \phi_{y}(s)+a_{y}(s)\right]$
■ The old variables with respect to actions and angles are
$u(s)=\sqrt{2 \beta_{u}(s) J_{u}} \cos \phi_{u}(s), \quad p_{u}(s)=-\sqrt{\frac{2 J_{u}}{\beta_{u}(s)}}\left(\sin \phi_{u}(s)+\alpha_{u}(s) \cos \phi_{u}(s)\right)$ and the Hamiltonian takes the form

$$
\mathcal{H}_{0}\left(J_{x}, J_{y}, s\right)=\frac{J_{x}}{\beta_{x}(s)}+\frac{J_{y}}{\beta_{y}(s)}
$$

- Considering on-momentum motion, the Hamiltonian can be written as

$$
\mathcal{H}=\frac{p_{x}^{2}+p_{y}^{2}}{2}+\frac{K_{x}(s) x^{2}-K_{y}(s) y^{2}}{2}
$$

- The generating function from the original to action angle variables is
$F_{1}\left(x, y, \phi_{x}, \phi_{y} ; s\right)=-\frac{x^{2}}{2 \beta_{x}(s)}\left[\tan \phi_{x}(s)+a_{x}(s)\right]-\frac{y^{2}}{2 \beta_{y}(s)}\left[\tan \phi_{y}(s)+a_{y}(s)\right]$
- The old variables with respect to actions and angles are

$$
u(s)=\sqrt{2 \beta_{u}(s) J_{u}} \cos \phi_{u}(s), \quad p_{u}(s)=-\sqrt{\frac{2 J_{u}}{\beta_{u}(s)}}\left(\sin \phi_{u}(s)+\alpha_{u}(s) \cos \phi_{u}(s)\right)
$$

and the Hamiltonian takes the form

$$
\mathcal{H}_{0}\left(J_{x}, J_{y}, s\right)=\frac{J_{x}}{\beta_{x}(s)}+\frac{J_{y}}{\beta_{y}(s)}
$$

■ The "time" (longitudinal position) dependence can be eliminated by the transformation to normalized coordinate

Linear normal forms

- Make a coordinate transformation so that we get a simpler form of the matrix, i.e. ellipses are transformed to circles (simple rotation)

$$
M=\mathcal{A} \circ \mathcal{R} \circ \mathcal{A}^{-1} \quad \text { or }: \quad \mathcal{R}=\mathcal{A}^{-1} \circ M \circ \mathcal{A}
$$

- Using linear algebra, the solution is

$$
\mathcal{A}=\left(\begin{array}{cc}
\sqrt{\beta\left(s_{0}\right)} & 0 \\
-\frac{\alpha\left(s_{0}\right)}{\sqrt{\beta\left(s_{0}\right)}} & \frac{1}{\sqrt{\beta\left(s_{0}\right)}}
\end{array}\right) \quad \text { and } \quad \mathcal{R}=\left(\begin{array}{cc}
\cos \left(\mu_{x}\right) & \sin \left(\mu_{x}\right) \\
-\sin \left(\mu_{x}\right) & \cos \left(\mu_{x}\right)
\end{array}\right)
$$

■ This transformation can be extended to a non-linear system (see Advanced course)
co̊ Appendix

Magnetic multipole

■ From Gauss law of magnetostatics, a vector potential exist

$$
\nabla \cdot \mathbf{B}=0 \quad \rightarrow \quad \exists \mathbf{A}: \quad \mathbf{B}=\nabla \times \mathbf{A}
$$

■ Assuming transverse 2D field, vector potential has only one component A_{s}. The Ampere's law in vacuum (inside the beam pipe) $\nabla \times \mathbf{B}=0 \quad \rightarrow \quad \exists V: \quad \mathbf{B}=-\nabla V$

- Using the previous equations, the relations between field components and potentials are

$$
B_{x}=-\frac{\partial V}{\partial x}=\frac{\partial A_{s}}{\partial y}, \quad B_{y}=-\frac{\partial V}{\partial y}=-\frac{\partial A_{s}}{\partial x}
$$

i.e. Riemann conditions of an analytic function

Exists complex potential of $z=x+i y$ with power series expansion convergent in a circle with radius $|z|=r_{c}$ (distance from iron yoke)

$$
\mathcal{A}(x+i y)=A_{s}(x, y)+i V(x, y)=\sum_{n=1}^{\infty} \kappa_{n} z^{n}=\sum_{n=1}^{\infty}\left(\lambda_{n}+i \mu_{n}\right)(x+i y)^{n}
$$

■ From the complex potential we can derive the fields
$B_{y}+i B_{x}=-\frac{\partial}{\partial x}\left(A_{s}(x, y)+i V(x, y)\right)=-\sum_{n=1}^{\infty} n\left(\lambda_{n}+i \mu_{n}\right)(x+i y)^{n-1}$
■ Setting $\quad b_{n}=-n \lambda_{n}, \quad a_{n}=n \mu_{n}$

$$
B_{y}+i B_{x}=\sum_{n=1}\left(b_{n}-i a_{n}\right)(x+i y)^{n-1}
$$

■ Define normalized coefficients

$$
b_{n}^{\prime}=\frac{b_{n}}{10^{-4} B_{0}} r_{0}^{n-1}, a_{n}^{\prime}=\frac{a_{n}}{10^{-4} B_{0}} r_{0}^{n-1}
$$

on a reference radius $r_{0}, 10^{-4}$ of the main field to get

$$
B_{y}+i B_{x}=10^{-4} B_{0} \sum_{n=1}^{\infty}\left(b_{n}^{\prime}-i a_{n}^{\prime}\right)\left(\frac{x+i y}{r_{0}}\right)^{n-1}
$$

■ Note: $n^{\prime}=n-1$ is the US convention

Symplectic maps

- A generalization of the matrix (which can only describe linear systems), is a map, which transforms a system from some initial to some final coordinates

- Analyzing the map, will give useful information about the behavior of the system
- There are different ways to build the map:
\square Taylor (Power) maps
\square Lie transformations
\square Truncated Power Series Algebra (TPSA), can generate maps from straight-forward tracking
- Preservation of symplecticity is important

■ Consider two sets of canonical variables $\mathbf{Z}, \overline{\mathbf{Z}}$ which may be even considered as the evolution of the system between two points in phase space

- A transformation from the one to the other set can be constructed through a map $\mathcal{M}: \mathbf{Z} \mapsto \overline{\mathbf{Z}}$
■ The Jacobian matrix of the map $M=M(\mathbf{z}, t)$ is composed by the elements $M_{i j} \equiv \frac{\partial \bar{z}_{i}}{\partial z_{j}}$
■ The map is symplectic if $M^{T} J M=J \quad$ where $J=\left(\begin{array}{rr}\mathbf{0} & \mathbf{I} \\ -\mathbf{I} & \mathbf{0}\end{array}\right)$ ■ It can be shown that $\operatorname{det}(M)=1$
- It can be shown that the variables defined through a symplectic map $\quad\left[\bar{z}_{i}, \bar{z}_{j}\right]=\left[z_{i}, z_{j}\right]=J_{i j} \quad$ which is a known relation satisfied by canonical variables
■ In other words, symplectic maps preserve Poisson brackets
- Symplecticity guarantees that the transformations in phase space are area preserving
- To understand what deviation from symplecticity produces consider the simple case of the quadrupole with the general matrix written as

$$
\mathcal{M}_{\mathrm{Q}}=\left(\begin{array}{cc}
\cos (\sqrt{k} L) & \frac{1}{\sqrt{k}} \sin (\sqrt{k} L) \\
-\sqrt{k} \sin (\sqrt{k} L) & \cos (\sqrt{k} L)
\end{array}\right)
$$

■ Take the Taylor expansion for small lengths, up to first order

$$
\mathcal{M}_{\mathrm{Q}}=\left(\begin{array}{cc}
1 & L \\
-k L & 1
\end{array}\right)+O\left(L^{2}\right)
$$

■ This is indeed not symplectic as the determinant of the matrix is equal to $1+k L^{2}$, i.e. there is a deviation from symplecticity at $2^{\text {nd }}$ order in the quadrupole length provide the well-know elliptic trajectory in phase space

- Although the trajectory is very close to the original one, it spirals outwards towards infinity

Lie formalism

■ The Poisson bracket properties satisfy what is mathematically called a Lie algebra

- They can be represented by (Lie) operators of the form $: f: g=[f, g]$ and $: f:{ }^{2} g=[f,[f, g]]$ etc.

Lie formalism

- The Poisson bracket properties satisfy what is mathematically called a Lie algebra
- They can be represented by (Lie) operators of the form $: f: g=[f, g]$ and $: f:{ }^{2} g=[f,[f, g]]$ etc.
■ For a Hamiltonian system $H(\mathbf{z}, t)$ there is a formal solution of the equations of motion $\frac{d \mathbf{z}}{d t}=[H, \mathbf{z}]=: H: \mathbf{z}$ written as $\mathbf{z}(t)=\sum_{k=0}^{\infty} \frac{t^{k}: H:^{k}}{k!} \mathbf{z}_{0}=e^{t: H:} \mathbf{z}_{0}$ with a symplectic $\operatorname{map} \mathcal{M}=e^{: H:{ }^{k=0}}$

■ The Poisson bracket properties satisfy what is mathematically called a Lie algebra
■ They can be represented by (Lie) operators of the form $: f: g=[f, g]$ and $: f:{ }^{2} g=[f,[f, g]]$ etc.
■ For a Hamiltonian system $H(\mathbf{z}, t)$ there is a formal solution of the equations of motion $\frac{d \mathbf{z}}{d t}=[H, \mathbf{z}]=: H: \mathbf{z}$ written as $\mathbf{z}(t)=\sum_{k=0}^{\infty} \frac{t^{k}: H:{ }^{k}}{k!} \mathbf{z}_{0}=e^{t: H:} \mathbf{z}_{0}$ with a symplectic map $\mathcal{M}=e^{: H: ~}{ }^{k=0}$

- The 1-turn accelerator map can be represented by the composition of the maps of each element $\mathcal{M}=e^{: f_{2}:} e^{: f_{3}:} e^{: f_{4}:} \ldots$ where f_{i} (called the generator) is the Hamiltonian for each element, a polynomial of degree m in the variables z_{1}, \ldots, z_{n}

Hamiltonian

■ Considering the general expression of the the longitudinal component of the vector potential is (see appendix)

- In curvilinear coordinates (curved elements)

$$
A_{s}=\left(1+\frac{x}{\rho(s)}\right) B_{0} \Re e \sum_{n=0}^{\infty} \frac{b_{n}+i a_{n}}{n+1}(x+i y)^{n+1}
$$

\square In Cartesian coordinates $A_{s}=B_{0} \Re<\sum_{n=0}^{\infty} \frac{b_{n}+i a_{n}}{n+1}(x+i y)^{n+1}$ with the multipole coefficients being written as

$$
a_{n}=\left.\frac{1}{B_{0} n!} \frac{\partial^{n} B_{x}}{\partial x^{n}}\right|_{x=y=0} \text { and } b_{n}=\left.\frac{1}{B_{0} n!} \frac{\partial^{n} B_{y}}{\partial x^{n}}\right|_{x=y=0}
$$

- The general non-linear Hamiltonian can be written as

$$
\mathcal{H}\left(x, y, p_{x}, p_{y}, s\right)=\mathcal{H}_{0}\left(x, y, p_{x}, p_{y}, s\right)+\sum_{k_{x}, k_{y}} h_{k_{x}, k_{y}}(s) x^{k_{x}} y^{k_{y}}
$$

with the periodic functions $h_{k_{x}, k_{y}}(s)=h_{k_{x}, k_{y}}(s+C)$

- Dipole:

$$
H=\frac{x \delta}{\rho}+\frac{x^{2}}{2 \rho^{2}}+\frac{p_{x}^{2}+p_{y}^{2}}{2(1+\delta)}
$$

■ Quadrupole:

$$
H=\frac{1}{2} k_{1}\left(x^{2}-y^{2}\right)+\frac{p_{x}^{2}+p_{y}^{2}}{2(1+\delta)}
$$

$$
H=\frac{1}{3} k_{2}\left(x^{3}-3 x y^{2}\right)+\frac{p_{x}^{2}+p_{y}^{2}}{2(1+\delta)}
$$

- Octupole:

$$
H=\frac{1}{4} k_{3}\left(x^{4}-6 x^{2} y^{2}+y^{4}\right)+\frac{p_{x}^{2}+p_{y}^{2}}{2(1+\delta)}
$$

■ Consider the 1D quadrupole Hamiltonian

$$
H=\frac{1}{2}\left(k_{1} x^{2}+p^{2}\right)
$$

$■$ For a quadrupole of length L, the map is written as

$$
e^{\frac{L}{2}:\left(k_{1} x^{2}+p^{2}\right):}
$$

Map for quadrupole

■ Consider the 1D quadrupole Hamiltonian

$$
H=\frac{1}{2}\left(k_{1} x^{2}+p^{2}\right)
$$

■ For a quadrupole of length L, the map is written as

$$
e^{\frac{L}{2}:\left(k_{1} x^{2}+p^{2}\right)}
$$

\square Its application to the transverse variables is

$$
\begin{aligned}
e^{-\frac{L}{2}:\left(k_{1} x^{2}+p^{2}\right):} x & =\sum_{n=0}^{\infty}\left(\frac{\left(-k_{1} L^{2}\right)^{n}}{(2 n)!} x+L \frac{\left(-k_{1} L^{2}\right)^{n}}{(2 n+1)!} p\right) \\
e^{-\frac{L}{2}:\left(k_{1} x^{2}+p^{2}\right):} p & =\sum_{n=0}^{\infty}\left(\frac{\left(-k_{1} L^{2}\right)^{n}}{(2 n)!} p-\sqrt{k_{1}} \frac{\left(-k_{1} L^{2}\right)^{n}}{(2 n+1)!} p\right)
\end{aligned}
$$

