Task 12.1. Coordination and Communication

See introductory section on page 29.

Task 12.2. Turnkey Software

- Integrated Turnkey Software Stack, for physics and performance studies
- Simplified data model toolkit for modern hardware platforms
- Digitisation extensions for geometry toolkit
- R&D study on frameworks to manage heterogeneous resources

Task 12.3. Simulation

- Fast simulation techniques integrated into Geant4
- Machine learning based calorimeter simulation toolkit for training and inference

Task 12.4. Track Reconstruction

- Develop complete track reconstruction chain with Acts composable algorithms
- Implement a portable version of Acts algorithms, for heterogeneous computing
- Machine learning reconstruction algorithm for MPGD detectors

Task 12.5. Particle Flow Reconstruction

- Advanced PFA algorithms for DUNE detectors using new readout technologies
- PFA algorithm with particle ID for dual-readout calorimeters
- Optimised APRIL PFA algorithm for hadronic jets

WP12

12.4 TRACK RECONSTRUCTION

INFN sites: Bologna, Ferrara, LNF, Torino

Contact person: Gianluigi Cibinetto (Ferrara)

DEVELOPMENT OF MACHINE LEARNING ALGORITHMS FOR MICRO PATTERN GASEOUS

• Timeline and task: 4 years

- First year: uRWELL simulation \rightarrow cluster reconstruction GEM and uRWELL.
- Second year: development of track finding
- Third year: track cleaning and refinement
- Fourth year: application to IDEA detector pre-shower and muon \rightarrow optimization

• Deliverables

- 1. A scientific paper describing the performed activity and the results.
- 2. An open-source software suite for training and testing ML algorithms with MPGD data and simulations.

Simulation and ML development

R. Farinelli and L. Lavezzi, RD51 coll. Meeting - Oct 2019

For triple-GEM, we developed a parametric simulation which takes into account diffusion, transparency, gain, induction and readout electronics.

We tuned it to test beam data \rightarrow both charge and time readout for CoG and uTPC cluster reconstruction.

Goal I: extend the simulation to other MPGD detectors.

Goal II: develop general purpose Machine Learning tracking algorithms.

Simulation and ML algorithms can be developed in the general framework

THE GROUP

- The group
 - INFN Bologna: main sub-task \rightarrow porting and integration with IDEA general framework
 - INFN Ferrara/Torino: MPGD parametric simulation, uTPC development and ML algorithms
 - INFN Frascati Laboratory: responsible for uRWELL technology and test beam data
 - INFN Ferrara/Torino and IHEP (Beijing): tracking and ML development