

Segmented aluminum shells in LARP LR and LQ magnets

P. Ferracin

on behalf of the MQXF (and LARP) collaboration

Technical meeting on MQXF longitudinal mechanics April 6th, 2021 LBNL, Berkeley, CA, USA

Outline

- Introduction
- LRS01 and LRS02
- LQS01
- Conclusions

Overview of LARP Program (in 2009)

----BERKELEY LAB

- Introduction
- LRS01 and LRS02
- LQS01
- Conclusions

LRS objectives

- LHC Accelerator Research Program (LARP)
 - Demonstrate that Nb₃Sn magnets are a viable option for an LHC luminosity upgrade

- LR magnet series
 - 3.6 m long racetrack coils in a shell-based structure
 - Address length issues in Nb₃Sn superconducting coils
 - Investigate shell-based structure scale-up for long magnets

LRS01 magnet design and parameters (I)

- Extension of LBNL SM magnet
- Two double-layer racetrack coils
- "Common-coil" configuration
- Coils contained within
 - Iron pads
 - Iron yoke
 - Aluminum shell (3.6 m long)
- 2 bladders and 4 interf. keys for assembly and pre-load
- I_{ss} (4.5 K) = 10.6 kA
- B_{peak} (4.5 K) = 12.0 T
- About 1 T margin in the end

LRS01 magnet design and parameters (II)

- Shell pre-tension
 - 70 MPa after bladder operation
 - 200 MPa at 4.5 K
- Force transferred to coil module
 - Mainly to pole and rails
 - Coil stress at 4.5 K: 30 MPa
- Electro-magnetic forces along *x* axis
 - Coil stress at 12 T: 70-80 MPa
- Target shell stress at 4.5 K (SM tests)
 - 150-250 MPa

Assembly, pre-loading, and cool-down (I)

- New procedure
 - Insertion of yoke la
- Two rafts with alumir
- "Insertion" beam
- "Cantilevered" bear Removable support
 - Supports
 - Pistons

Assembly, pre-loading, and cool-down (II)

- Sliding of first yoke half into 2 the shell
- Pistons pressurization
 - Yoke in contact with shell
- Rotation of the structure
- Yoke resting on bottom surface of the shell
- Configuration for insertion of second yoke half

Assembly, pre-loading, and cool-down (III)

- Sliding of second yoke half into the shell
- Piston pressurization and insertion of gap keys
- Insertion of coil-pack
 - Al plates as dummy coils

Assembly, pre-loading, and cool-down (IV)

- 1.8 m bladders from both ends
- Bladder pressure up to 55 MPa
- Insertion of interference shims and removal of yoke gap keys
- Bladder deflation and removal
- Cool-down (77 K)
- Reassembly with LRS01 coils
- Final loading and test

Shell instrumentation

24 gauges

- 6 longitudinal stations
- Left and right
- Azimuthal and axial strain with T compens.

Cool-down with dummy coils

- Shell axial strain in the shell
 - Large variation along z (bell-shaped)
 - High axial tension in the center

Shell - yoke

$$\sigma_{\theta} = \frac{E}{\left(1 - \nu^2\right)} \left(\varepsilon_{\theta} + \nu \varepsilon_z\right)$$

- Shell azimuthal stress $\sigma_{\theta} \propto$ coil pre-load
- Shell azimuthal strain ϵ_{θ} is obtain via keys-and bladders
- If the shell can slide, $\varepsilon_z = -v\varepsilon_{\theta}$
- So, $\sigma_{\theta} = E \epsilon_{\theta} \rightarrow$ basically a 2D problem

Shell - yoke

- But if you have friction between shell and yoke
 → the shell cannot slide and, in particular at cold, it gets in tension → ε_z
- Bell shape profile: some sliding in the ends, but "glued" to the yoke in the center
 - $\varepsilon_z \sim \Delta \alpha \rightarrow 2000 \ \mu \varepsilon$ in *z*
 - \rightarrow ~ 50 MPa in θ

Cool-down with dummy coils

- So,
 - Axial strain \rightarrow contribution to azimuthal stress
 - Variation of axial strain \rightarrow variation of azimuthal stress

LRS01 test

• High axial tension \rightarrow slippage

MURATORE et al.: LARP 3.6 m Nb₃Sn RACETRACK COILS SUPPORTED BY FULL-LENGTH SHELL STRUCTURES

LRS02: shell segmented

• Basically, from a 3D problem to a quasi 2D

LRS01 vs LRS02

Test results

LRS results

- Two tests
 - LRS01 with full shell
 - LRS02 with segm. shell
- LRS02 achieved 96% I_{ss}
 - 11.5 T of peak field
 - Improvement from LRS01 to LRS02
- Demonstrated performance of long Nb₃Sn coil
- Demonstrated assembly and loading procedure of long shell-based structures

Paolo Ferracin

06/02/2009

17

Outline

- Introduction
- LRS01 and LRS02
- LQS01
- Conclusions

Overview of LARP Program (in 2009)

----BERKELEY LAB

From LRS to LQ

Magnet design Cross-section

- 20 mm thick AI shell
- 4-split iron yoke
 - Gap keys and auxiliary bladders
 - Holes for tie rods
- Iron pads
 - Holes for coil end support and tie rods
- Iron masters
 - 2 bladders
 - 2 interference keys
- G10 sheet between coil and pad laminations

Magnet design 3D components

- 4 shell segments, 0.85 m long
- Yoke laminations, 50 mm thick with 3.4 m long tie rods
- Iron pad laminations, 50 mm thick with 3.4 m long tie rods
- Iron masters, 2 x 1.7 m long
 - Easy insertion and removal of coil pack (large clearance)
 - Continuous surface
 - Pad-yoke alignment
 - Improved tolerances

Paolo Ferracin

Magnet design Axial support

- Stainless steel end plate
 50 mm thick
- Stainless steel axial rods
 24.5 mm diameter
- Axial pre-load provided by piston

Magnet design Assembly procedure

- New procedure to be developed
 - Assembly of 850 mm long segments
 - Joining of segments with air pallets
 - Insertion of coil-pad sub-assembly with masters

Assembly and loading of 850 mm long segment Stacking pad and yoke laminations

- Yoke rod tension: 330 MPa
- Force on yoke stack: 190 kN

Paolo Ferracin Assembly and loading of 850 mm long segment Insertion of yoke stacks in shell

4 azimuthal and 4 axial gauges Locations

- longitudinal center of the shell
- quadrupole mid-planes

Assembly of 1.7 m long structure Section 1 and 2 before joining operation

Assembly of 1.7 m long structure Preparation of alignment pins and bushings

Assembly of 1.7 m long structure Joining operation of 2 segments (I)

Assembly of 1.7 m long structure Joining operation of 2 segments (II)

Assembly of 1.7 m long structure Section 1 and 2 after joining operation

Assembly of 1.7 m long structure Section 1 and 2 connected

Assembly of 1.7 m long structure Assembly of second segment pair

Assembly of full-length structure Joining operation of 2 segment pairs

Yoke rod tension: 330 MPa Compressive force: 760 kN

Assembly of full-length structure 3.4 m long yoke-shell sub-assembly

Assembly of full-length structure 3.4 m long yoke-shell sub-assembly

Assembly of full-length structure 3.2 m long coil-pack sub-assembly

Loading of full-length structure Bladder operation

Loading of full-length structure Axial loading operation

LQSD pre-loaded

Outline

- Introduction
- LRS01 and LRS02
- LQS01
- Conclusions

Conclusions

- The aluminum shell segmentation was implemented in the first long racetrack magnet to
 - Minimize axial tension on the shell
 - Reduce possibility of sudden slippage shell wrt yoke
 - Minimize variation of axial strain
 - Reduce resulting variation of azimuthal stress

• With a four piece yoke of a quadrupole, the shell segmentation required the definition of a new assembly procedure based on shell-yoke modules

