Introduction to Machine Learning Lecture 1

Michael Kagan

SLAC

Hadron Collider Physics Summer School August 23, 2021

Outline

- Lecture 1
 - Brief introduction to probability and statistics
 - Introduction to Machine Learning fundamentals
 - Linear Models
- Lecture 2
 - Neural Networks
 - Deep Neural Networks
 - Convolutional, Recurrent, and Graph Neural Networks
- Lecture 3
 - Unsupervised Learning
 - Autoencoders
 - Generative Adversarial Networks and Normalizing Flows

Long History of Machine Learning

Perceptron

AlphaStar

Machine Learning in HEP

+ More! Check out The Living Review of ML in HEP

What is Machine Learning?

- Giving computers the ability to learn without explicitly programming them (Arthur Samuel, 1959)
- Statistics + Algorithms
- Computer Science + Probability + Optimization Techniques
- Fitting data with complex functions
- Mathematical models <u>learnt from data</u> that characterize the patterns, regularities, and relationships amongst variables in the system

Machine Learning: Models

- Key element is a **mathematical model**
 - A mathematical characterization of system(s) of interest, typically via random variables
 - Chosen model depends on the task / available data
- Learning: estimate statistical model from data
 - Supervised learning
 - Unsupervised Learning
 - Reinforcement Learning

• **Prediction and Inference:** using statistical model to make predictions on new data points and infer properties of system(s)

Supervised Learning

• Given N examples with observable features $\{x_i \in X\}$ and prediction **targets** $\{y_i \in Y\}$, learn function mapping h(x)=y

Classification:

 ${\mathcal Y}$ is a finite set of ${\rm labels}$ (i.e. classes) denoted with integers

Regression: *Y* is a real number

Unsupervised Learning

Given some data $D = \{x_i\}$, but no labels, find structure in data

- **Clustering**: partition the data into groups $D = \{D_1 \cup D_2 \cup D_3 \dots \cup D_k\}$
- **Dimensionality reduction**: find a low dimensional (less complex) representation of the data with a mapping Z=h(X)
- **Density estimation and sampling**: estimate the PDF p(x), and/or learn to draw plausible new samples of x

Image Credit - Link

Reinforcement Learning

- Models for agents that take actions depending on current state
 - Actions incur rewards, and affect future states ("feedback")
- Learn to make the best sequence of decisions to achieve a given goal when feedback is often delayed until you reach the goal

Deep Reinforcement Learning with AlphaGo

Nature 529, 484-489 (28 January 2016)

Brief Review of Probability and Statistics

Probability Mass Function for <u>Discrete random variables</u> (r.v.) $P(x_i) = p_i$

- Prob. of ith outcome: limit of long term frequency $\lim_{N \to \infty} \frac{\# x_i}{N \text{ trials}}$ - Normalized: $\sum_i P(x_i) = 1$

- Bernoulli Distribution: $P(x) = p^{x}(1-p)^{1-x}$
 - $x \in \{0,1\}$ 1=HEADS, 0= TAILS
 - Biased coin with heads prob. $p \in [0,1]$

Slide Credit: K. Cranmer: Intro to Stats.

Probability Mass and Density Functions

Probability Density Function (PDF) for <u>Continuous r.v.</u> $P(x \in [x, x + dx]) = f(x)dx$ $- \text{Normalized: } \int_{-\infty}^{\infty} f(x)dx = 1$

Cumulative Distribution Function

$$F_{X}(x) = P(X < x) = \int_{-\infty}^{x} f(t) dt$$

- Density defined as: $f(x) = \frac{\partial F_{X}(x)}{\partial x}$

b

0

а

Expected Values

• Expected value of a function of random variables

$$\mathbf{E}[g(x)] = \int_{-\infty}^{\infty} g(x)p(x)dx$$

- Mean of a r.v.: $E[x] = \overline{x} = \int_{-\infty}^{\infty} x p(x) dx$
- Variance: $Var(X) = E[(x E[x])^2] = E[x^2] E[x]^2$
- Covariance of two r.v.'s: Cov(x, y) = E[(x E[x])(y E[y])]

Expected Values

- Expected value of a function of random variables $E[g(x)] = \int_{-\infty}^{\infty} g(x)p(x)dx$
- Often we can't compute this integral
- Or often in Machine Learning we don't know p(x)
- With set of N repeated observations {*x_i*} that are independent and identically distributed, can approximate with Empirical Estimator

$$\mathrm{E}[g(x)] \approx \frac{1}{N} \sum_{i=1}^{N} g(x_i)$$

Parametric Models

PDF often depends on parameters θ we are interested in
 Write the density as f(x|θ) or f(x; θ)

<u>Discrete</u>: Poisson Distribution: $\frac{Poiss(k|\lambda)}{k!} = \frac{\lambda^k e^{-\lambda}}{k!}$ - Prob. of k events in fixed interval of time - λ = average number of events

• Given value x = x' to evaluate PDF, can consider it as a continuous function of the parameters θ

Poisson Example: Likelihood of μ given n

 $L(\mu) = Poiss(n|\mu)$

- Continuous function of μ - NOTE: not a PDF

- Common to examine
$$-\ln L$$

Slide Credit: K. Cranmer: Intro to Stats.

Likelihood with Repeated Observations

- Given a set of repeated observations of *x* that are independent and identically distributed
 - Repeated observations written $\{x_i\}$
 - $-x \sim f(x|\theta)$ means the x follows distribution $f(x|\theta)$
- Likelihood

$$L(\theta) = \prod_{i} f(x_i | \theta)$$

• Log-likelihood

$$\ln L(\theta) = \sum_{i} \ln f(x_i | \theta)$$

Maximum Likelihood

• Given observations $\{x_i\}$ and model PDF $f(x|\theta)$ the maximum likelihood estimator for θ is:

$$\theta^*(x) = \arg \max_{\theta} L(\theta) = \arg \min_{\theta} - \ln L(\theta)$$

Maximum Likelihood

• Given observations $\{x_i\}$ and model PDF $f(x|\theta)$ the maximum likelihood estimator for θ is:

$$\theta^*(x) = \arg \max_{\theta} L(\theta) = \arg \min_{\theta} - \ln L(\theta)$$

Example: Exponential
$$p(x; \lambda) = \lambda e^{-\lambda}$$

 $-\ln L(\lambda) = \sum_{i=1}^{n} -\ln \lambda + \lambda x_{i}$
 $= -n \ln \lambda + \lambda \sum_{i} x_{i}$

Finding Minimum:

$$0 = \frac{\partial(-\ln L(\lambda))}{\partial \lambda} = \frac{-n}{\lambda} + \sum_{i} x_{i}$$

$$\rightarrow \lambda^{*}(\{x_{i}\}) = \frac{n}{\sum_{i} x_{i}}$$

Bayes Rule

- Given two r.v. with join density p(x, y)
- Marginal distribution: $p(x) = \int_{-\infty}^{\infty} p(x, y) dy$
- Conditional distribution: $p(x|y) = \frac{p(x,y)}{p(y)}$
- Bayes Rule: $p(y|x) = \frac{p(x|y)p(y)}{p(x)}$
 - -p(y) is the "prior" in that is doesn't account for x
 - -p(x|y) is the "likelihood" of observing x given knowledge of y
 - -p(x) acts as the normalizing constant
 - -p(y|x) is often denoted the "posterior" because it is derived from knowledge of x

Slide Credit: K. Cranmer: Intro to Stats.

See Backup for visual proof of Bayes Theorem

Supervised Learning: How does it work?

Supervised Learning: How does it work?

Supervised Learning: How does it work?

Empirical Risk Minimization

- Find best weights *w* to minimizes the expected loss
 - $-L \equiv$ Loss to compare predictions h(x) with target y
 - $-h(x;w) \equiv$ parameterized family of functions
 - $-\Omega(w) \equiv$ regularization to penalize certain values of w
 - $-\lambda \equiv$ Hyperparameter to control penalty
 - Use empirical estimate of expected loss over data $\{x_i, y_i\}$
- Framework to design learning algorithms
- Learning is cast as an optimization problem
 Searching over parameter space

Example Loss Functions

Square Error Loss:
– Often used in regression

- With
$$y \in \{0,1\}$$

- Often used in classification
- Hinge Loss: - With $y \in \{-1,1\}$ $L(h(\mathbf{x}; \mathbf{w}), y) = \max(0, 1 - yh(\mathbf{x}; \mathbf{w}))$
- Zero-One loss

- With h(**x**; **w**) predicting labe
$$L(h(\mathbf{x}; \mathbf{w}), y) = 1_{y \neq h(\mathbf{x}; \mathbf{w})}$$

$$L(h(\mathbf{x};\mathbf{w}),y) = (h(\mathbf{x};\mathbf{w}) - y)^{2}$$

$$L(h(\mathbf{x}; \mathbf{w}), y) = -y \log h(\mathbf{x}; \mathbf{w}) - (1-y) \log(1 - h(\mathbf{x}; \mathbf{w}))$$

Least Squares Linear Regression

Least Squares Linear Regression

- Set of input / output pairs $D = \{x_i, y_i\}_{i=1...n}$ $-x_i \in \mathbb{R}^m$ $-y_i \in \mathbb{R}$
- Assume a linear model $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{T}\mathbf{x}$

$$L(\mathbf{w}) = \frac{1}{2} \sum_{i} \left(y_i - h(\mathbf{x}_i; \mathbf{w}) \right)^2$$

• Find $\mathbf{w}^* = \arg \min_{\mathbf{w}} L(\mathbf{w})$

Least Squares Linear Regression: Matrix Form

- Set of input / output pairs $D = \{ \textbf{x}_i \text{ , } y_i \}_{i=1 \ldots n}$
 - Design matrix $\mathbf{X} \in \mathbb{R}^{nxm}$
 - Target vector $\mathbf{y} \in \mathbb{R}^n$

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,m} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,m} \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Least Squares Linear Regression: Matrix Form

- Set of input / output pairs $D = \{ \textbf{x}_i \text{ , } y_i \}_{i=1 \ldots n}$
 - Design matrix $\mathbf{X} \in \mathbb{R}^{nxm}$
 - Target vector $\mathbf{y} \in \mathbb{R}^n$
- Rewrite loss: $L(\mathbf{w}) = \frac{1}{2} (\mathbf{y} \mathbf{X}\mathbf{w})^T (\mathbf{y} \mathbf{X}\mathbf{w})$
- Minimize w.r.t. w:

$$L(\mathbf{w}) = \frac{1}{2} (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = \arg\min_{\mathbf{w}} L(\mathbf{w})$$

- Assume $y_i = mx_i + e_i$
- Random error: $e_i \sim \mathcal{N}(0, \sigma) \rightarrow p(e_i) \propto \exp\left(\frac{1}{2}\frac{e_i^2}{\sigma^2}\right)$ - Noisy measurements, unmeasured variables, ...

- Assume $y_i = mx_i + e_i$
- Random error: $e_i \sim \mathcal{N}(0, \sigma) \rightarrow p(e_i) \propto \exp\left(\frac{1}{2}\frac{e_i^2}{\sigma^2}\right)$ - Noisy measurements, unmeasured variables, ...

• Then
$$y_i \sim \mathcal{N}(mx_i, \sigma) \rightarrow p(y_i | x_i; m) \propto \exp\left(\frac{1}{2} \frac{(y_i - mx_i)^2}{\sigma^2}\right)$$

- Assume $y_i = mx_i + e_i$
- Random error: $e_i \sim \mathcal{N}(0, \sigma) \rightarrow p(e_i) \propto \exp\left(\frac{1}{2}\frac{e_i^2}{\sigma^2}\right)$ - Noisy measurements, unmeasured variables, ...

• Then
$$y_i \sim \mathcal{N}(mx_i, \sigma) \rightarrow p(y_i | x_i; m) \propto \exp\left(\frac{1}{2} \frac{(y_i - mx_i)^2}{\sigma^2}\right)$$

• Likelihood function:

$$L(m) = p(\mathbf{y}|\mathbf{X};m) = \prod_{i} p(y_i|x_i;m)$$
$$\rightarrow -\log L(m) \sim \sum_{i} (y_i - mx_i)^2$$

- Assume $y_i = mx_i + e_i$
- Random error: $e_i \sim \mathcal{N}(0, \sigma) \rightarrow p(e_i) \propto \exp\left(\frac{1}{2}\frac{e_i^2}{\sigma^2}\right)$ - Noisy measurements, unmeasured variables, ...

• Then
$$y_i \sim \mathcal{N}(mx_i, \sigma) \rightarrow p(y_i | x_i; m) \propto \exp\left(\frac{1}{2} \frac{(y_i - mx_i)^2}{\sigma^2}\right)$$

• Likelihood function:

$$L(m) = p(\mathbf{y}|\mathbf{X};m) = \prod_{i} p(y_i|x_i;m)$$

$$\rightarrow -\log L(m) \sim \sum_{i} (y_i - mx_i)^2$$
Squared
loss function!

Linear Regression Example

• Reconstructed Jet energy vs. Number of primary vertices

Linear Classification

Classification

- Learn a function to separate different classes of data
- Avoid over-fitting:
 - Learning too fined details about your training sample that will not generalize to unseen data

Linear Decision Boundaries

• Separate two classes:

$$-\mathbf{x}_{i} \in \mathbb{R}^{m}$$
$$-\mathbf{y}_{i} \in \{-1,1\}$$

• Linear discriminant model $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{T}\mathbf{x} + \mathbf{b}$

• **Decision boundary** defined by hyperplane

[Bishop]

 $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + \mathbf{b} = \mathbf{0}$

• Class predictions: Predict class 0 if $h(\mathbf{x}_i; \mathbf{w}) < 0$, else class 1

Linear Classifier with Least Squares?

• Why not use least squares loss with binary targets?

Linear Classifier with Least Squares?

- Why not use least squares loss with binary targets?
 - Penalized even when predict class correctly
 - Least squares is very sensitive to outliers

Linear Discriminant Analysis

- Goal: Separate data from two classes / populations
- Data from joint distribution $(\mathbf{x}, \mathbf{y}) \sim p(\mathbf{X}, \mathbf{Y})$
 - Features: $\mathbf{x} \in \mathbb{R}^{m}$
 - Labels: $y \in \{0,1\}$

Linear Discriminant Analysis

- Goal: Separate data from two classes / populations
- Data from joint distribution $(\mathbf{x}, \mathbf{y}) \sim p(\mathbf{X}, \mathbf{Y})$
 - Features: $\mathbf{x} \in \mathbb{R}^{m}$
 - Labels: $y \in \{0,1\}$
- Breakdown the joint distribution:

p(x, y) = p(x|y)p(y)

Likelihood: Distribution of features for a given class **Prior:** Probability of each class

Linear Discriminant Analysis

- Goal: Separate data from two classes / populations
- Data from joint distribution $(\mathbf{x}, \mathbf{y}) \sim p(\mathbf{X}, \mathbf{Y})$
 - Features: $\mathbf{x} \in \mathbb{R}^{m}$
 - Labels: $y \in \{0,1\}$
- Breakdown the joint distribution: p(x, y) = p(x|y)p(y)
- Assume likelihoods are Gaussian

$$p(\boldsymbol{x}|\boldsymbol{y}) = \frac{1}{\sqrt{(2\pi)^m |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_{\boldsymbol{y}})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_{\boldsymbol{y}})\right)$$

- Separating classes \rightarrow Predict the class y of a point \mathbf{x}
- $p(y=1|\mathbf{x})$

• Separating classes \rightarrow Predict the class of a point \mathbf{x}

$$p(y=1|\mathbf{x}) = \frac{p(\mathbf{x}|y=1)p(y=1)}{p(\mathbf{x})}$$

Bayes Rule

• Separating classes \rightarrow Predict the class of a point \mathbf{x}

$$p(y=1|\mathbf{x}) = \frac{p(\mathbf{x}|y=1)p(y=1)}{p(\mathbf{x})}$$
Bayes Rule

$$= \frac{p(\mathbf{x}|y=1)p(y=1)}{p(\mathbf{x}|y=0)p(y=0) + p(\mathbf{x}|y=1)p(y=1)} \qquad \begin{array}{l} \text{Marginal} \\ \text{definition} \end{array}$$

• Separating classes \rightarrow Predict the class of a point **x**

$$p(y=1|\mathbf{x}) = \frac{p(\mathbf{x}|y=1)p(y=1)}{p(\mathbf{x})}$$
Bayes Rule

$$= \frac{p(\mathbf{x}|y=1)p(y=1)}{p(\mathbf{x}|y=0)p(y=0) + p(\mathbf{x}|y=1)p(y=1)} \qquad \begin{array}{l} \text{Marging} \\ \text{definition} \end{array}$$

al on

$$= \frac{1}{1 + \frac{p(\mathbf{x}|y=0)p(y=0)}{p(\mathbf{x}|y=1)p(y=1)}}$$

$$= \frac{1}{1 + \exp\left(\log \frac{p(\mathbf{x}|y=0)p(y=0)}{p(\mathbf{x}|y=1)p(y=1)}\right)}$$

Logistic Sigmoid Function

Predicting Classes with Gaussian Likelihoods

$$p(y = 1 | \mathbf{x}) = \sigma \Big(\log \frac{p(\mathbf{x} | y = 1)}{p(\mathbf{x} | y = 0)} + \log \frac{p(y = 1)}{p(y = 0)} \Big)$$

Log-likelihood ratio Constant w.r.t. **x**

Predicting Classes with Gaussian Likelihoods

$$p(y=1|\mathbf{x}) = \sigma\Big(\log\frac{p(\mathbf{x}|y=1)}{p(\mathbf{x}|y=0)} + \log\frac{p(y=1)}{p(y=0)}\Big)$$

• For our Gaussian data:

$$= \sigma \Big(\log p(\mathbf{x}|y=1) - \log p(\mathbf{x}|y=0) + const. \Big)$$

$$= \sigma \left(-\frac{1}{2} (\mathbf{x} - \mu_1)^T \Sigma^{-1} (\mathbf{x} - \mu_1) + \frac{1}{2} (\mathbf{x} - \mu_0)^T \Sigma^{-1} (\mathbf{x} - \mu_0) + const. \right)$$

 $=\sigma\left(\mathbf{w}^T\mathbf{x}+b\right)$

Collect terms

What did we learn?

- For this data, the log-likelihood ratio is linear!
 - Line defines boundary to separate the classes
 - Sigmoid turns distance from boundary to probability

This unit is the main building block of Neural Networks!

• Even without Gaussian assumption on data, can still use model as classifier:

$$p(y = 1 | \mathbf{x}) = \sigma \left(\mathbf{w}^T \mathbf{x} + b \right) \equiv h(\mathbf{x}; \mathbf{w})$$

• How to train model? Use Maximum Likelihood – Define: $p_i \equiv p(y_i = y | \mathbf{x}_i)$

$$P(y_i = y | x_i) = \text{Bernoulli}(p_i) = (p_i)^{y_i} (1 - p_i)^{1 - y_i} = - \begin{bmatrix} p_i & \text{if } y_i = 1 \\ 1 - p_i & \text{if } y_i = 0 \end{bmatrix}$$

- Goal:
 - Given i.i.d. dataset of pairs $(\mathbf{x}_i, \mathbf{y}_i)$ find w and b that maximize likelihood of data

• Negative log-likelihood

$$-\ln \mathcal{L} = -\ln \prod_{i} (p_i)^{y_i} (1 - p_i)^{1 - y_i}$$

• Negative log-likelihood

$$-\ln \mathcal{L} = -\ln \prod_{i} (p_{i})^{y_{i}} (1 - p_{i})^{1 - y_{i}}$$

$$= -\sum_{i} y_{i} \ln(p_{i}) + (1 - y_{i}) \ln(1 - p_{i})$$

$$= -\sum_{i} y_{i} \ln(p_{i}) + (1 - y_{i}) \ln(1 - p_{i})$$

• Negative log-likelihood

$$-\ln \mathcal{L} = -\ln \prod_{i} (p_i)^{y_i} (1-p_i)^{1-y_i}$$

$$= -\sum_{i} y_i \ln(p_i) + (1-y_i) \ln(1-p_i)$$

$$= \sum_{i} y_i \ln(1+e^{-\mathbf{w}^T \mathbf{x}}) + (1-y_i) \ln(1+e^{\mathbf{w}^T \mathbf{x}})$$

- No closed form solution to $w^* = \arg \min_{w} \ln \mathcal{L}(w)$
- How to solve for **w**?

Gradient Descent

- Minimize loss by repeated gradient steps
 - Compute gradient w.r.t. current parameters: $\nabla_{\theta_i} \mathcal{L}(\theta_i)$
 - Update parameters: $\theta_{i+1} \leftarrow \theta_i \eta \nabla_{\theta_i} \mathcal{L}(\theta_i)$
 - $-\eta$ is the *learning rate*, controls how big of a step to take

• Too small a learning rate, convergence very slow

• Too large a learning rate, algorithm diverges

Small Learning rate

Large Learning rate

Stochastic Gradient Descent

• Loss is composed of a sum over samples:

$$\nabla_{\theta} \mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \mathcal{L}(y_i, h(x_i; \theta))$$

- Computing gradient grows linearly with N!
- (Mini-Batch) Stochastic Gradient Descent
 - Compute gradient update using 1 random sample (small size batch)
 - Gradient is unbiased \rightarrow on average it moves in correct direction
 - Tends to be much faster the full gradient descent
 - Several updates to SGD, like momentum, ADAM, RMSprop

Stochastic gradient descent

Gradient Descent

- Logistic Regression Loss is convex
 Single global minimum
- Iterations lower loss and move toward minimum

Logistic Regression Example

Basis Functions

• What if non-linear relationship between **y** and **x**?

Basis Functions

• What if non-linear relationship between **y** and **x**?

• Can choose basis functions $\phi(x)$ to form new features

$$h(x;w) = \sigma(w^T \phi(x))$$

- Polynomial basis $\phi(x) \sim \{1, x, x^2, x^3, ...\},$ Gaussian basis, ...
- Logistic regression on new features $\phi(x)$

Basis Functions

• What if non-linear relationship between **y** and **x**?

• Can choose basis functions $\phi(x)$ to form new features

$$h(x;w) = \sigma(w^T \phi(x))$$

- Polynomial basis $\phi(x) \sim \{1, x, x^2, x^3, ...\},$ Gaussian basis, ...
- Logistic regression on new features $\phi(x)$
- What basis functions to choose? *Overfit* with too much flexibility?

What is Overfitting

http://scikit-learn.org/

- What models allow us to do is **generalize** from data
- Different models generalize in different ways

Bias Variance Tradeoff

 generalization error = systematic error + sensitivity of prediction (bias) (variance)

- generalization error = systematic error + sensitivity of prediction (bias) (variance)
- Simple models <u>under-fit</u>: will deviate from data (high bias) but will not be influenced by peculiarities of data (low variance).

- generalization error = systematic error + sensitivity of prediction (bias) (variance)
- Simple models <u>under-fit</u>: will deviate from data (high bias) but will not be influenced by peculiarities of data (low variance).
- Complex models <u>over-fit</u>: will not deviate systematically from data (low bias) but will be very sensitive to data (high variance).

- generalization error = systematic error + sensitivity of prediction (bias) (variance)
- Simple models <u>under-fit</u>: will deviate from data (high bias) but will not be influenced by peculiarities of data (low variance).
- Complex models <u>over-fit</u>: will not deviate systematically from data (low bias) but will be very sensitive to data (high variance).
 - As dataset size grows, can reduce variance! Can use more complex model

Error

Model Complexity

Regularization – Control Complexity

$$L(\mathbf{w}) = \frac{1}{2}(\mathbf{y} - \mathbf{X}\mathbf{w})^2 + \alpha \Omega(\mathbf{w})$$

$$L2: \quad \Omega(\mathbf{w}) = ||\mathbf{w}||^2$$

- L2 keeps weights small, L1 keeps weights sparse!
- But how to choose hyperparameter α ?

http://scikit-learn.org/

 $L1: \quad \Omega(\mathbf{w}) = ||\mathbf{w}||$

How to Measure Generalization Error?

- Split dataset into multiple parts
- Training set
 - Used to fit model parameters

Validation set

 Used to check performance on independent data and tune hyper parameters

• Test set

- final evaluation of performance after all hyper-parameters fixed
- Needed since we tune, or "peek", performance with validation set

How to Measure Generalization Error?

Model Complexity

Summary

- Machine learning uses mathematical and statistical models learned from data to characterize patterns and relations between inputs, and use this for inference / prediction
- Machine learning comes in many forms, much of which has probabilistic and statistical foundations and interpretations (i.e. *Statistical Machine Learning*)
- Machine learning provides a powerful toolkit to analyze data
 - Linear methods can help greatly in understanding data
 - Choosing a model for a given problem is difficult, keep in mind the bias-variance tradeoff when building an ML model

Recommended Materials

- Many excellent books (many available free online)
 - Introduction to Statistical Learning
 - Elements of Statistical Learning
 - Pattern Recognition and Machine learning (Bishop)
- Many excellent courses and documentation available online
 - Andre Ng's machine learning course on Coursera
 - University course material online: Stanford CS229, Harvard CS181, ...
 - Lectures from Machine Learning Summer School (MLSS)
 - Lectures from Yandex Machine learning in HEP summer schools
 - Scikit Learn documentation
 - Francois Fleuret course at University of Geneva
 - <u>Gilles Louppe course at University of Liege</u>
 - <u>Yann LeCun & Alfredo Canziani course at NYU</u>
- References:

. . .

- I used / borrowed from many of these references to make these lectures!

References

- <u>http://scikit-learn.org/</u>
- [Bishop] Pattern Recognition and Machine Learning, Bishop (2006)
- [ESL] Elements of Statistical Learning (2nd Ed.) Hastie, Tibshirani & Friedman 2009
- [Murray] Introduction to machine learning, Murray
 - <u>http://videolectures.net/bootcamp2010_murray_iml/</u>
- [Ravikumar] What is Machine Learning, Ravikumar and Stone
 - <u>http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-Intro.pdf</u>
- [Parkes] CS181, Parkes and Rush, Harvard University
 - http://cs181.fas.harvard.edu
- [Ng] CS229, Ng, Stanford University
 - <u>http://cs229.stanford.edu/</u>
- [Rogozhnikov] Machine learning in high energy physics, Alex Rogozhnikov
 - <u>https://indico.cern.ch/event/497368/</u>
- [Fleuret] Francois Fleuret, EE559 Deep Learning, EPFL, 2018
 - https://documents.epfl.ch/users/f/fl/fleuret/www/dlc/

References

- <u>http://scikit-learn.org/</u>
- [Bishop] Pattern Recognition and Machine Learning, Bishop (2006)
- [ESL] Elements of Statistical Learning (2nd Ed.) Hastie, Tibshirani & Friedman 2009
- [Murray] Introduction to machine learning, Murray
 - <u>http://videolectures.net/bootcamp2010_murray_iml/</u>
- [Ravikumar] What is Machine Learning, Ravikumar and Stone
 - <u>http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-Intro.pdf</u>
- [Parkes] CS181, Parkes and Rush, Harvard University
 - <u>http://cs181.fas.harvard.edu</u>
- [Ng] CS229, Ng, Stanford University
 - <u>http://cs229.stanford.edu/</u>
- [Rogozhnikov] Machine learning in high energy physics, Alex Rogozhnikov
 - <u>https://indico.cern.ch/event/497368/</u>

Where is ML Used, an Incomplete List

- Natural Language Processing
- Speech and handwriting recognition
- Object recognition and computer vision
- Fraud detection
- Financial market analysis
- Search engines
- Spam and virus detection
- Medical diagnosis
- Robotics control
- Automation: energy usage, systems control, video games, self-driving cars
- Advertising
- Data Science

Minor elliptical axis (y) against Major elliptical axis (x) for stars (red) and galaxies (blue). (Amos Storkey)

http://www-wfau.roe.ac.uk/sss/

Predicted Land Usage

[ESL]

[Ravikumar]

$$\min_{h\in H}\int L(h(x), y)p(x, y)dxdy$$

- Find best function *h* to minimizes the expected loss
 - $-L \equiv$ Loss to compare predictions h(x) with target y
 - $-H \equiv$ Set of functions to search over
 - $-p(x, y) \equiv PDF$ of data
- But:
 - Don't know how to choose the set of functions H
 - Don't know how to search over all functions
 - Don't know true data distribution p(x, y)
 - Only have samples of data $\{x_i, y_i\}$

Parametric vs. Non-parametric Models

Parametric vs. Non-parametric Models

- Parametric Models:
 - Don't grow in complexity w/ dataset size.
 - Fixed set of parameters to learn
 - Example: sum of Gaussians, each with mean, variance, and normalization

Binary kNN Classification (k=1)

http://bdewilde.github.io/blog/blogger/2012/10/26 /classification-of-hand-written-digits-3/

• Non-Parametric Models:

- Grow in complexity w/ more data
- Don't have a fixed set of parameters,
 - Example: Nearest-Neighbors

Bayes Theorem in Pictures

Bayes Theorem in Pictures

... IN PICTURES (FROM BOB COUSINS)

P, Conditional P, and Derivation of Bayes' Theorem in Pictures

Gradient Descent

• Gradient Descent:

Make a step $\theta \leftarrow \theta + \eta v$ in *direction* v with *step size* η to reduce loss

• How does loss change in different directions? Let λ be a perturbation along direction v

$$\left. \frac{d}{d\lambda} \mathcal{L}(\theta + \lambda v) \right|_{\lambda = 0} = v \cdot \nabla_{\theta} \mathcal{L}(\theta)$$

• Then Steepest Descent direction is: $v = -\nabla_{\theta} \mathcal{L}(\theta)$

Stochastic Gradient Descent

• Loss is composed of a sum over samples:

$$\nabla_{\theta} \mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \mathcal{L}(y_i, h(x_i; \theta))$$

Computing gradient grows linearly with N!

• (Mini-Batch) Stochastic Gradient Descent

- Compute gradient update using 1 random sample (small size batch)
- Gradient is unbiased \rightarrow on average it moves in correct direction
- Tends to be much faster the full gradient descent
- Several updates to SGD, like momentum, ADAM, RMSprop to
 - Help to speed up optimization in flat regions of loss
 - Have adaptive learning rate
 - Learning rate adapted for each parameter

- Model h(x), defined over dataset, modeling random variable output y $E[y]=\bar{y}$ $E[h(x)]=\bar{h}(x)$
- Examining generalization error at x, w.r.t. possible training datasets

$$E[(y - h(x))^{2}] = E[(y - \bar{y})^{2}] + (\bar{y} - \bar{h}(x))^{2} + E[(h(x) - \bar{h}(x))^{2}]$$

= noise + (bias)² + variance

- Model h(x), defined over dataset, modeling random variable output y $E[y]=\bar{y}$ $E[h(x)]=\bar{h}(x)$
- Examining generalization error at x, w.r.t. possible training datasets

$$E[(y - h(x))^{2}] = \begin{bmatrix} E[(y - \bar{y})^{2}] \\ = noise \end{bmatrix} + (\bar{y} - \bar{h}(x))^{2} + E[(h(x) - \bar{h}(x))^{2}] \\ + (bias)^{2} + variance \end{bmatrix}$$
Intrinsic noise in system or measurements
Can not be avoided or improved with modeling
Lower bound on possible noise

- Model h(x), defined over dataset, modeling random variable output y $E[y]=\bar{y}$ $E[h(x)]=\bar{h}(x)$
- Examining generalization error at x, w.r.t. possible training datasets

$$E[(y - h(x))^{2}] = \begin{bmatrix} E[(y - \bar{y})^{2}] \\ = \text{noise} \end{bmatrix} + \begin{bmatrix} (\bar{y} - \bar{h}(x))^{2} \\ (\text{bias})^{2} \end{bmatrix} + \begin{bmatrix} E[(h(x) - \bar{h}(x))^{2}] \\ + \text{variance} \end{bmatrix}$$

• The **more complex the model** h(x) is, the more data points it will capture, and **the lower the bias** will be.

- Model h(x), defined over dataset, modeling random variable output y $E[y]=\bar{y}$ $E[h(x)]=\bar{h}(x)$
- Examining generalization error at x, w.r.t. possible training datasets

$$E[(y - h(x))^{2}] = \begin{bmatrix} E[(y - \bar{y})^{2}] \\ = \text{noise} \end{bmatrix} + \begin{bmatrix} (\bar{y} - \bar{h}(x))^{2} \\ (\text{bias})^{2} \end{bmatrix} + \begin{bmatrix} E[(h(x) - \bar{h}(x))^{2}] \\ + \text{variance} \end{bmatrix}$$

- The **more complex the model** h(x) is, the more data points it will capture, and **the lower the bias** will be.
- **More Complexity** will make the model "move" more to capture the data points, and hence its **variance will be larger**.

- Model h(x), defined over dataset, modeling random variable output y $E[y]=\bar{y}$ $E[h(x)]=\bar{h}(x)$
- Examining generalization error at x, w.r.t. possible training datasets

$$E[(y - h(x))^{2}] = \begin{bmatrix} E[(y - \bar{y})^{2}] \\ = \text{noise} \end{bmatrix} + \begin{bmatrix} (\bar{y} - \bar{h}(x))^{2} \\ (\text{bias})^{2} \end{bmatrix} + \begin{bmatrix} E[(h(x) - \bar{h}(x))^{2}] \\ + \text{variance} \end{bmatrix}$$

- The **more complex the model** h(x) is, the more data points it will capture, and **the lower the bias** will be.
- More Complexity will make the model "move" more to capture the data points, and hence its variance will be larger.
 - As dataset size grows, can reduce variance! Can use more complex model

Regularization and Cross Validation

Regularization

• Can control the complexity of a model by placing **constraints on the model parameters**

- Trading some bias to reduce model variance

• **L2 norm**:
$$\Omega(\mathbf{w}) = ||\mathbf{w}||^2 = \sum_{i} w_i^2$$

- "Ridge regression", enforcing weights not too large– Equivalent to Gaussian prior over weights
- L1 norm: $\Omega(\mathbf{w}) = ||\mathbf{w}|| = \sum_{i} |w_i|$ - "Lasso regression", enforcing sparse weights
- Elastic net \rightarrow L1 + L2 constraints

Regularization

Pattern Recognition and Machine Learning C. M. Bishop (2006)

Cross Validation

- Especially when dataset is small, split training set into K-folds
 - Train on (K-1) folds, validate on 1 fold, then iterate
 - Use average estimated performance on K-folds
 - Allows for estimate of performance RMS
- Even when dataset not small, useful technique to estimate variance of expected performance, and for comparing different models / hyperparameters

Multiclass Classification?

• What if there is more than two classes?

Multiclass Classification?

• What if there is more than two classes?

- Softmax \rightarrow multi-class generalization of logistic loss
 - Have N classes $\{c_1,\,...,\,c_N\}$
 - Model target $\mathbf{y}_k = (0, ..., 1, ...0)$ kth element in vector

$$p(c_k|x) = \frac{\exp(\mathbf{w}_k x)}{\sum_j \exp(\mathbf{w}_j x)}$$

– Gradient descent for each of the weights \mathbf{w}_k

Estimating a Classifier Performance

		Predicted	
		Positive	Negative
True	Positive	True Positives (TP)	False Negatives (FN)
	Negative	False Positives (FP)	True Negatives (TN)

Confusion Matrix Classifying tau decays

Receiver Operating Characteristic (ROC) Curve classifying quarks vs. gluons

arXiv:1512.05955

arXiv:1702.00414