Introduction to Machine Learning Lecture 1

Michael Kagan

SLAC

Hadron Collider Physics Summer School
August 23, 2021

Outline

- Lecture 1
- Brief introduction to probability and statistics
- Introduction to Machine Learning fundamentals
- Linear Models
- Lecture 2
- Neural Networks
- Deep Neural Networks
- Convolutional, Recurrent, and Graph Neural Networks
- Lecture 3
- Unsupervised Learning
- Autoencoders
- Generative Adversarial Networks and Normalizing Flows

Long History of Machine Learning

Perceptron

AlphaStar

Machine Learning in HEP

Design Optimization

+ More! Check out The Living Review of ML in HEP

What is Machine Learning?

- Giving computers the ability to learn without explicitly programming them (Arthur Samuel, 1959)
- Statistics + Algorithms
- Computer Science + Probability + Optimization Techniques
- Fitting data with complex functions
- Mathematical models learnt from data that characterize the patterns, regularities, and relationships amongst variables in the system

Machine Learning: Models

- Key element is a mathematical model
- A mathematical characterization of system(s) of interest, typically via random variables
- Chosen model depends on the task / available data
- Learning: estimate statistical model from data
- Supervised learning
- Unsupervised Learning
- Reinforcement Learning
- ...
- Prediction and Inference: using statistical model to make predictions on new data points and infer properties of system(s)

Supervised Learning

- Given N examples with observable features $\left\{\mathrm{x}_{\mathrm{i}} \in \mathcal{X}\right\}$ and prediction targets $\left\{y_{i} \in \mathcal{Y}\right\}$, learn function mapping $h(x)=y$

Classification:
 y is a finite set of labels (i.e. classes) denoted with integers

Regression:
 \mathcal{Y} is a real number
 Is a real number

Unsupervised Learning

Given some data $\mathrm{D}=\left\{\mathrm{x}_{\mathrm{i}}\right\}$, but no labels, find structure in data

Clustering: partition the data into groups $\mathrm{D}=\left\{\mathrm{D}_{1} \cup \mathrm{D}_{2} \cup \mathrm{D}_{3} \ldots \cup \mathrm{D}_{\mathrm{k}}\right\}$

[Bishop]

Dimensionality reduction: find a low dimensional (less complex) representation of the data with a mapping $\mathrm{Z}=\mathrm{h}(\mathrm{X})$

Density estimation and sampling: estimate the PDF $\mathrm{p}(\mathrm{x})$, and/or learn to draw plausible new samples of x

Reinforcement Learning

[Ravikumar]

- Models for agents that take actions depending on current state
- Actions incur rewards, and affect future states ("feedback")
- Learn to make the best sequence of decisions to achieve a given goal when feedback is often delayed until you reach the goal

Deep Reinforcement Learning with AlphaGo

Brief Review of Probability and Statistics

Probability Mass Function

Probability Mass Function for Discrete random variables (r.v.)

$$
P\left(x_{i}\right)=p_{i}
$$

- Prob. of $\mathrm{i}^{\text {th }}$ outcome: limit of long term frequency $\lim _{N \rightarrow \infty} \frac{\# x_{i}}{N \text { trials }}$
- Normalized: $\sum_{i} P\left(x_{i}\right)=1$

Bernoulli Distribution: $\mathrm{P}(x)=p^{x}(1-p)^{1-x}$
$-x \in\{0,1\} \quad 1 \equiv$ HEADS, $0 \equiv$ TAILS

- Biased coin with heads prob. $p \in[0,1]$

Probability Mass and Density Functions

Probability Density Function (PDF) for Continuous r.v.

$$
\begin{aligned}
& P(x \in[x, x+d x])=f(x) d x \\
- & \text { Normalized: } \int_{-\infty}^{\infty} f(x) d x=1
\end{aligned}
$$

Cumulative Distribution Function

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{X}}(\mathrm{x})=P(X<x)=\int_{-\infty}^{x} f(t) d t \\
& \text { - Density defined as: } f(x)=\frac{\partial F_{X}(x)}{\partial x}
\end{aligned}
$$

Expected Values

- Expected value of a function of random variables

$$
\mathrm{E}[g(x)]=\int_{-\infty}^{\infty} g(x) p(x) d x
$$

- Mean of a r.v. : $\mathrm{E}[x]=\bar{x}=\int_{-\infty}^{\infty} x p(x) d x$
- Variance: $\operatorname{Var}(X)=\mathrm{E}\left[(x-\mathrm{E}[x])^{2}\right]=\mathrm{E}\left[x^{2}\right]-\mathrm{E}[x]^{2}$
- Covariance of two r.v.'s: $\operatorname{Cov}(x, y)=\mathrm{E}[(x-\mathrm{E}[x])(y-\mathrm{E}[y])]$

Expected Values

- Expected value of a function of random variables

$$
\mathrm{E}[g(x)]=\int_{-\infty}^{\infty} g(x) p(x) d x
$$

- Often we can't compute this integral
- Or often in Machine Learning we don't know $p(x)$
- With set of N repeated observations $\left\{x_{i}\right\}$ that are independent and identically distributed, can approximate with Empirical Estimator

$$
\mathrm{E}[g(x)] \approx \frac{1}{N} \sum_{i=1}^{N} g\left(x_{i}\right)
$$

Parametric Models

- PDF often depends on parameters θ we are interested in
- Write the density as $f(x \mid \theta)$ or $f(x ; \theta)$

Discrete: Poisson Distribution:

$$
\operatorname{Poiss}(k \mid \lambda)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

- Prob. of k events in fixed interval of time
$-\lambda=$ average number of events

Continuous: Gaussian Distribution:

$$
\mathrm{G}(x \mid \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

$-\mu$ is the average value
$-\sigma^{2}$ is the variance

Likelihood Function

- Given value $x=x^{\prime}$ to evaluate PDF, can consider it as a continuous function of the parameters θ

Poisson Example: Likelihood of μ given n

$$
L(\mu)=\operatorname{Poiss}(n \mid \mu)
$$

- Continuous function of μ
- NOTE: not a PDF
- Common to examine $-\ln L$

Figure from R. Cousins, Am. J. Phys. 63398 (1995)

Likelihood with Repeated Observations

- Given a set of repeated observations of x that are independent and identically distributed
- Repeated observations written $\left\{x_{i}\right\}$
$-x \sim f(x \mid \theta)$ means the x follows distribution $f(x \mid \theta)$
- Likelihood

$$
L(\theta)=\prod_{i} f\left(x_{i} \mid \theta\right)
$$

- Log-likelihood

$$
\ln L(\theta)=\sum_{i} \ln f\left(x_{i} \mid \theta\right)
$$

Maximum Likelihood

- Given observations $\left\{x_{i}\right\}$ and model $\operatorname{PDF} f(x \mid \theta)$ the maximum likelihood estimator for θ is:

$$
\theta^{*}(x)=\arg \max _{\theta} L(\theta)=\arg \min _{\theta}-\ln L(\theta)
$$

Maximum Likelihood

- Given observations $\left\{x_{i}\right\}$ and model $\operatorname{PDF} f(x \mid \theta)$ the maximum likelihood estimator for θ is:

$$
\theta^{*}(x)=\arg \max _{\theta} L(\theta)=\arg \min _{\theta}-\ln L(\theta)
$$

Example: Exponential $p(x ; \lambda)=\lambda e^{-\lambda x}$

$$
\begin{aligned}
-\ln L(\lambda) & =\sum_{i=1}^{n}-\ln \lambda+\lambda x_{i} \\
& =-n \ln \lambda+\lambda \sum_{i} x_{i}
\end{aligned}
$$

Finding Minimum:

$$
\begin{aligned}
& 0=\frac{\partial(-\ln L(\lambda))}{\partial \lambda}=\frac{-n}{\lambda}+\sum_{i} x_{i} \\
& \rightarrow \lambda^{*}\left(\left\{x_{i}\right\}\right)=\frac{n}{\sum_{i} x_{-} i}
\end{aligned}
$$

Bayes Rule

- Given two r.v. with join density $p(x, y)$
- Marginal distribution: $p(x)=\int_{-\infty}^{\infty} p(x, y) d y$
- Conditional distribution: $p(x \mid y)=\frac{p(x, y)}{p(y)}$
- Bayes Rule: $p(y \mid x)=\frac{p(x \mid y) p(y)}{p(x)}$
$-p(y)$ is the "prior" in that is doesn't account for x
$-p(x \mid y)$ is the "likelihood" of observing x given knowledge of y
$-p(x)$ acts as the normalizing constant
$-p(y \mid x)$ is often denoted the "posterior" because it is derived from knowledge of x

Supervised Learning: How does it work?

Supervised Learning: How does it work?

- Design function with adjustable parameters
- Design a Loss function
- Find best parameters which minimize loss

Supervised Learning: How does it work?

- Design function with adjustable parameters
- Design a Loss function
- Find best parameters which minimize loss
- Use a labeled training-set to compute loss
- Adjust parameters to reduce loss function
- Repeat until parameters stabilize

Empirical Risk Minimization

- Find best weights w to minimizes the expected loss
$-L \equiv$ Loss to compare predictions $h(x)$ with target y
$-h(x ; w) \equiv$ parameterized family of functions
$-\Omega(w) \equiv$ regularization to penalize certain values of w
$-\lambda \equiv$ Hyperparameter to control penalty
- Use empirical estimate of expected loss over data $\left\{x_{i}, y_{i}\right\}$
- Framework to design learning algorithms
- Learning is cast as an optimization problem
- Searching over parameter space

Example Loss Functions

- Square Error Loss:

$$
L(h(\mathbf{x} ; \mathbf{w}), y)=(h(\mathbf{x} ; \mathbf{w})-y)^{2}
$$

- Often used in regression
- Cross entropy:
- With $\mathrm{y} \in\{0,1\}$

$$
\begin{aligned}
L(h(\mathbf{x} ; \mathbf{w}), y)= & -y \log h(\mathbf{x} ; \mathbf{w}) \\
& -(1-y) \log (1-h(\mathbf{x} ; \mathbf{w}))
\end{aligned}
$$

- Often used in classification
- Hinge Loss:
- With $\mathrm{y} \in\{-1,1\}$

$$
L(h(\mathbf{x} ; \mathbf{w}), y)=\max (0,1-y h(\mathbf{x} ; \mathbf{w}))
$$

- Zero-One loss
- With $\mathrm{h}(\mathbf{x} ; \mathbf{w})$ predicting label

$$
L(h(\mathbf{x} ; \mathbf{w}), y)=1_{y \neq h(\mathbf{x} ; \mathbf{w})}
$$

[Bishop]

Least Squares Linear Regression

- Set of input / output pairs $D=\left\{x_{i}, y_{i}\right\}_{i=1 \ldots n}$
$-\mathrm{x}_{\mathrm{i}} \in \mathbb{R}^{\mathrm{m}}$
$-y_{i} \in \mathbb{R}$
- Assume a linear model

$$
\mathrm{h}(\mathbf{x} ; \mathbf{w})=\mathbf{w}^{\mathrm{T}} \mathbf{x}
$$

- Squared Loss function:

$$
L(\mathbf{w})=\frac{1}{2} \sum_{i}\left(y_{i}-h\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)^{2}
$$

- Find $\mathbf{w}^{*}=\arg \min _{\mathbf{w}} \mathrm{L}(\mathbf{w})$

Least Squares Linear Regression: Matrix Form

- Set of input / output pairs $D=\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1 \ldots n}$
- Design matrix $\mathbf{X} \in \mathbb{R}^{\text {nxm }}$
- Target vector $\mathbf{y} \in \mathbb{R}^{\mathrm{n}}$

$$
\mathbf{X}=\left[\begin{array}{cccc}
x_{1,1} & x_{1,2} & \cdots & x_{1, m} \\
x_{2,1} & x_{2,2} & \cdots & x_{2, m} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n, 1} & x_{n, 2} & \cdots & x_{n, m}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Least Squares Linear Regression: Matrix Form

- Set of input / output pairs $D=\left\{\mathbf{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right\}_{\mathrm{i}=1 \ldots n}$
- Design matrix $\mathbf{X} \in \mathbb{R}^{\text {nxm }}$
- Target vector $\mathbf{y} \in \mathbb{R}^{\mathrm{n}}$
- Rewrite loss:

$$
L(\mathbf{w})=\frac{1}{2}(\mathbf{y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{y}-\mathbf{X} \mathbf{w})
$$

- Minimize w.r.t. $\mathbf{w}: \quad \mathbf{w}^{*}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}=\arg \min _{\mathbf{w}} L(\mathbf{w})$

Linear Regression - Probabilistic Interpretation

- Assume $\mathrm{y}_{\mathrm{i}}=\mathrm{mx}_{\mathrm{i}}+\mathrm{e}_{\mathrm{i}}$
- Random error: $\quad e_{i} \sim \mathcal{N}(0, \sigma) \rightarrow p\left(e_{i}\right) \propto \exp \left(\frac{1}{2} \frac{e_{i}^{2}}{\sigma^{2}}\right)$
- Noisy measurements, unmeasured variables, ...

Linear Regression - Probabilistic Interpretation

- Assume $\mathrm{y}_{\mathrm{i}}=\mathrm{mx}_{\mathrm{i}}+\mathrm{e}_{\mathrm{i}}$
- Random error: $\quad e_{i} \sim \mathcal{N}(0, \sigma) \rightarrow p\left(e_{i}\right) \propto \exp \left(\frac{1}{2} \frac{e_{i}^{2}}{\sigma^{2}}\right)$
- Noisy measurements, unmeasured variables, ...
- Then $y_{i} \sim \mathcal{N}\left(m x_{i}, \sigma\right) \rightarrow p\left(y_{i} \mid x_{i} ; m\right) \propto \exp \left(\frac{1}{2} \frac{\left(y_{i}-m x_{i}\right)^{2}}{\sigma^{2}}\right)$

Linear Regression - Probabilistic Interpretation

- Assume $y_{i}=\mathrm{mx}_{\mathrm{i}}+\mathrm{e}_{\mathrm{i}}$
- Random error: $\quad e_{i} \sim \mathcal{N}(0, \sigma) \rightarrow p\left(e_{i}\right) \propto \exp \left(\frac{1}{2} \frac{e_{i}^{2}}{\sigma^{2}}\right)$
- Noisy measurements, unmeasured variables, ...
- Then $y_{i} \sim \mathcal{N}\left(m x_{i}, \sigma\right) \rightarrow p\left(y_{i} \mid x_{i} ; m\right) \propto \exp \left(\frac{1}{2} \frac{\left(y_{i}-m x_{i}\right)^{2}}{\sigma^{2}}\right)$
- Likelihood function:

$$
\left.\begin{array}{rl}
L(m) & =p(\mathbf{y} \mid \mathbf{X} ; m)
\end{array} \begin{array}{r}
\prod_{i} p\left(y_{i} \mid x_{i} ; m\right) \\
\rightarrow-\log L(m)
\end{array}\right) \sum_{i}\left(y_{i}-m x_{i}\right)^{2} .
$$

Linear Regression - Probabilistic Interpretation

- Assume $y_{i}=\mathrm{mx}_{\mathrm{i}}+\mathrm{e}_{\mathrm{i}}$
- Random error: $\quad e_{i} \sim \mathcal{N}(0, \sigma) \rightarrow p\left(e_{i}\right) \propto \exp \left(\frac{1}{2} \frac{e_{i}^{2}}{\sigma^{2}}\right)$
- Noisy measurements, unmeasured variables, ...
- Then $y_{i} \sim \mathcal{N}\left(m x_{i}, \sigma\right) \rightarrow p\left(y_{i} \mid x_{i} ; m\right) \propto \exp \left(\frac{1}{2} \frac{\left(y_{i}-m x_{i}\right)^{2}}{\sigma^{2}}\right)$
- Likelihood function:

$$
\left.\begin{array}{rl}
L(m) & =p(\mathbf{y} \mid \mathbf{X} ; m)
\end{array} \begin{array}{r}
\prod_{i} p\left(y_{i} \mid x_{i} ; m\right) \\
\rightarrow-\log L(m)
\end{array}\right) \sum_{i}\left(y_{i}-m x_{i}\right)^{2} .
$$

Squared
loss function!

Linear Regression Example

- Reconstructed Jet energy vs. Number of primary vertices

Linear Classification

Classification

Rectangular cuts

Linear discriminant

Nonlinear discriminant

- Learn a function to separate different classes of data
- Avoid over-fitting:
- Learning too fined details about your training sample that will not generalize to unseen data

Linear Decision Boundaries

- Separate two classes:

$$
\begin{aligned}
& -\mathbf{x}_{\mathrm{i}} \in \mathbb{R}^{\mathrm{m}} \\
& -\mathrm{y}_{\mathrm{i}} \in\{-1,1\}
\end{aligned}
$$

- Linear discriminant model

$$
h(\mathbf{x} ; \mathbf{w})=\mathbf{w}^{\mathrm{T}} \mathbf{x}+b
$$

- Decision boundary defined by hyperplane
[Bishop]

$$
h(\mathbf{x} ; \mathbf{w})=\mathbf{w}^{\mathrm{T}} \mathbf{x}+\mathrm{b}=0
$$

- Class predictions: Predict class o if $\mathrm{h}\left(\mathbf{x}_{\mathrm{i}} ; \mathbf{w}\right)<0$, else class 1

Linear Classifier with Least Squares?

$$
L(\mathbf{w})=\frac{1}{2} \sum_{i}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2}
$$

[Bishop]

- Why not use least squares loss with binary targets?

Linear Classifier with Least Squares?

$$
L(\mathbf{w})=\frac{1}{2} \sum_{i}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2}
$$

- Why not use least squares loss with binary targets?
- Penalized even when predict class correctly
- Least squares is very sensitive to outliers

Linear Discriminant Analysis

- Goal: Separate data from two classes / populations
- Data from joint distribution $(\mathbf{x}, \mathrm{y}) \sim \mathrm{p}(\mathbf{X}, \mathrm{Y})$
- Features: $\mathbf{x} \in \mathbb{R}^{\mathrm{m}}$
- Labels: $\quad y \in\{0,1\}$

Linear Discriminant Analysis

- Goal: Separate data from two classes / populations
- Data from joint distribution $(\mathbf{x}, \mathrm{y}) \sim \mathrm{p}(\mathbf{X}, \mathrm{Y})$
- Features: $\quad \mathbf{x} \in \mathbb{R}^{m}$
- Labels: $\quad y \in\{0,1\}$
- Breakdown the joint distribution:

$$
p(x, y)=p(x \mid y) p(y)
$$

Likelihood:
Distribution of features for a given class

Prior:

Probability of each class

Linear Discriminant Analysis

- Goal: Separate data from two classes / populations
- Data from joint distribution $(\mathbf{x}, \mathrm{y}) \sim \mathrm{p}(\mathbf{X}, \mathrm{Y})$
- Features: $\quad \mathbf{x} \in \mathbb{R}^{\mathrm{m}}$
- Labels: $\quad y \in\{0,1\}$
- Breakdown the joint distribution:

$$
p(x, y)=p(x \mid y) p(y)
$$

- Assume likelihoods are Gaussian

$$
p(x \mid y)=\frac{1}{\sqrt{(2 \pi)^{m}|\Sigma|}} \exp \left(-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{y}\right)^{T} \Sigma^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{y}\right)\right)
$$

Predicting the Class

- Separating classes \rightarrow Predict the class y of a point \mathbf{x}

$$
p(y=1 \mid \mathbf{x})
$$

Predicting the Class

- Separating classes \rightarrow Predict the class of a point \mathbf{x}

$$
p(y=1 \mid \mathbf{x})=\frac{p(\mathbf{x} \mid y=1) p(y=1)}{p(\mathbf{x})}
$$

Predicting the Class

- Separating classes \rightarrow Predict the class of a point \mathbf{x}

$$
\begin{array}{rlrl}
p(y=1 \mid \mathbf{x}) & =\frac{p(\mathbf{x} \mid y=1) p(y=1)}{p(\mathbf{x})} \\
& =\frac{\text { Bayes Rule }}{p(\mathbf{x} \mid y=0) p(y=0)+p(\mathbf{x} \mid y=1) p(y=1)} & & \quad \begin{array}{l}
\text { Marginal } \\
\text { definition }
\end{array}
\end{array}
$$

Predicting the Class

- Separating classes \rightarrow Predict the class of a point \mathbf{x}

$$
p(y=1 \mid \mathbf{x})=\frac{p(\mathbf{x} \mid y=1) p(y=1)}{p(\mathbf{x})}
$$

$$
=\frac{p(\mathbf{x} \mid y=1) p(y=1)}{p(\mathbf{x} \mid y=0) p(y=0)+p(\mathbf{x} \mid y=1) p(y=1)}
$$

$$
=\frac{1}{1+\frac{p(\mathbf{x} \mid y=0) p(y=0)}{p(\mathbf{x} \mid y=1) p(y=1)}}
$$

$$
=\frac{1}{1+\exp \left(\log \frac{p(\mathbf{x} \mid y=0) p(y=0)}{p(\mathbf{x} \mid y=1) p(y=1)}\right)}
$$

Logistic Sigmoid Function

Predicting Classes with Gaussian Likelihoods

$$
p(y=1 \mid \mathbf{x})=\sigma\left(\log \frac{p(\mathbf{x} \mid y=1)}{p(\mathbf{x} \mid y=0)}+\log \frac{p(y=1)}{p(y=0)}\right)
$$

Predicting Classes with Gaussian Likelihoods

$$
p(y=1 \mid \mathbf{x})=\sigma\left(\log \frac{p(\mathbf{x} \mid y=1)}{p(\mathbf{x} \mid y=0)}+\log \frac{p(y=1)}{p(y=0)}\right)
$$

- For our Gaussian data:

$$
\begin{aligned}
= & \sigma(\log p(\mathbf{x} \mid y=1)-\log p(\mathbf{x} \mid y=0)+\text { const. }) \\
= & \sigma\left(-\frac{1}{2}\left(\mathbf{x}-\mu_{1}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\mu_{1}\right)+\frac{1}{2}\left(\mathbf{x}-\mu_{0}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\mu_{0}\right)\right. \\
& + \text { const. })
\end{aligned}
$$

$$
=\sigma\left(\mathbf{w}^{T} \mathbf{x}+b\right)
$$

What did we learn?

- For this data, the log-likelihood ratio is linear!
- Line defines boundary to separate the classes
- Sigmoid turns distance from boundary to probability

Logistic Regression

This unit is the main building block of Neural Networks!

Logistic Regression

- Even without Gaussian assumption on data, can still use model as classifier:

$$
p(y=1 \mid \mathbf{x})=\sigma\left(\mathbf{w}^{T} \mathbf{x}+b\right) \equiv h(\mathbf{x} ; \mathbf{w})
$$

- How to train model? Use Maximum Likelihood - Define: $p_{i} \equiv p\left(y_{i}=y \mid \boldsymbol{x}_{i}\right)$
$P\left(y_{i}=y \mid x_{i}\right)=\operatorname{Bernoulli}\left(p_{i}\right)=\left(p_{i}\right)^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}}= \begin{cases}\mathrm{p}_{\mathrm{i}} & \text { if } \mathrm{y}_{\mathrm{i}}=1 \\ 1-\mathrm{p}_{\mathrm{i}} & \text { if } y_{\mathrm{i}}=0\end{cases}$
- Goal:
- Given i.i.d. dataset of pairs $\left(\mathbf{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ find w and b that maximize likelihood of data

Logistic Regression

- Negative log-likelihood
$-\ln \mathcal{L}=-\ln \prod_{i}\left(p_{i}\right)^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}}$

Logistic Regression

- Negative log-likelihood
$\begin{aligned} &-\ln \mathcal{L}=-\ln \prod_{i}\left(p_{i}\right)^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}} \\ &=-\sum_{i} y_{i} \ln \left(p_{i}\right)+\left(1-y_{i}\right) \ln \left(1-p_{i}\right) \\ & \text { binary cross entropyloss function! }\end{aligned}$

Logistic Regression

- Negative log-likelihood

$$
\begin{aligned}
-\ln \mathcal{L} & =-\ln \prod_{i}\left(p_{i}\right)^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}} \quad \text { binary coss entropor } \text { vess } \\
& =-\sum_{i} y_{i} \ln \left(p_{i}\right)+\left(1-y_{i}\right) \ln \left(1-p_{i}\right) \\
& =\sum_{i} y_{i} \ln \left(1+e^{-\mathbf{w}^{T} \mathbf{x}}\right)+\left(1-y_{i}\right) \ln \left(1+e^{\mathbf{w}^{T} \mathbf{x}}\right)
\end{aligned}
$$

- No closed form solution to $w^{*}=\arg \min _{w}-\ln \mathcal{L}(w)$
- How to solve for \mathbf{w} ?

Gradient Descent

- Minimize loss by repeated gradient steps
- Compute gradient w.r.t. current parameters: $\nabla_{\theta_{i}} \mathcal{L}\left(\theta_{i}\right)$
- Update parameters: $\quad \theta_{i+1} \leftarrow \theta_{i}-\eta \nabla_{\theta_{i}} \mathcal{L}\left(\theta_{i}\right)$
$-\eta$ is the learning rate, controls how big of a step to take

Step Sizes

- Too small a learning rate, convergence very slow
- Too large a learning rate, algorithm diverges

Small Learning rate

Stochastic Gradient Descent

- Loss is composed of a sum over samples:

$$
\nabla_{\theta} \mathcal{L}(\theta)=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \mathcal{L}\left(y_{i}, h\left(x_{i} ; \theta\right)\right)
$$

- Computing gradient grows linearly with N !
- (Mini-Batch) Stochastic Gradient Descent
- Compute gradient update using 1 random sample (small size batch)
- Gradient is unbiased \rightarrow on average it moves in correct direction
- Tends to be much faster the full gradient descent
- Several updates to SGD, like momentum, ADAM, RMSprop

Batch gradient descent

Stochastic gradient descent

Gradient Descent

- Logistic Regression Loss is convex
- Single global minimum
- Iterations lower loss and move toward minimum

Logistic Regression Example

Basis Functions

- What if non-linear relationship between \mathbf{y} and \mathbf{x} ?

Basis Functions

$\Phi:\binom{x_{1}}{x_{2}} \rightarrow\left(\begin{array}{c}x_{1}^{2} \\ x_{2}^{2} \\ \sqrt{2} x_{1} x_{2}\end{array}\right) \quad \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$

- What if non-linear relationship between \mathbf{y} and \mathbf{x} ?
- Can choose basis functions $\phi(\mathrm{x})$ to form new features

$$
h(x ; w)=\sigma\left(w^{T} \phi(x)\right)
$$

- Polynomial basis $\phi(\mathrm{x}) \sim\left\{1, \mathrm{x}, \mathrm{x}^{2}, \mathrm{x}^{3}, \ldots\right\}$, Gaussian basis, ...
- Logistic regression on new features $\phi(\mathrm{x})$

Basis Functions

$$
\Phi:\binom{x_{1}}{x_{2}} \rightarrow\left(\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
\sqrt{2} x_{1} x_{2}
\end{array}\right) \quad \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}
$$

- What if non-linear relationship between \mathbf{y} and \mathbf{x} ?
- Can choose basis functions $\phi(\mathrm{x})$ to form new features

$$
h(x ; w)=\sigma\left(w^{T} \phi(x)\right)
$$

- Polynomial basis $\phi(\mathrm{x}) \sim\left\{1, \mathrm{x}, \mathrm{x}^{2}, \mathrm{x}^{3}, \ldots\right\}$, Gaussian basis, ...
- Logistic regression on new features $\phi(\mathrm{x})$
- What basis functions to choose? Overfit with too much flexibility?

What is Overfitting

Underfitting

Overfitting
http://scikit-learn.org/

- What models allow us to do is generalize from data
- Different models generalize in different ways

Bias Variance Tradeoff

- generalization error $=$ systematic error + sensitivity of prediction (bias)
(variance)

Bias Variance Tradeoff

- generalization error $=$ systematic error + sensitivity of prediction (bias)
(variance)
- Simple models under-fit: will deviate from data (high bias) but will not be influenced by peculiarities of data (low variance).

Bias Variance Tradeoff

- generalization error $=$ systematic error + sensitivity of prediction (bias)
- Simple models under-fit: will deviate from data (high bias) but will not be influenced by peculiarities of data (low variance).
- Complex models over-fit: will not deviate systematically from data (low bias) but will be very sensitive to data (high variance).

Bias Variance Tradeoff

- generalization error $=$ systematic error + sensitivity of prediction (bias)
- Simple models under-fit: will deviate from data (high bias) but will not be influenced by peculiarities of data (low variance).
- Complex models over-fit: will not deviate systematically from data (low bias) but will be very sensitive to data (high variance).
- As dataset size grows, can reduce variance! Can use more complex model

Bias Variance Tradeoff

Regularization - Control Complexity

$$
\begin{gathered}
L(\mathbf{w})=\frac{1}{2}(\mathbf{y}-\mathbf{X} \mathbf{w})^{2}+\alpha \Omega(\mathbf{w}) \\
L 2: \Omega(\mathbf{w})=\|\mathbf{w}\|^{2} \quad L 1: \Omega(\mathbf{w})=\|\mathbf{w}\|
\end{gathered}
$$

- L2 keeps weights small, L1 keeps weights sparse!
- But how to choose hyperparameter α ?

How to Measure Generalization Error?

- Split dataset into multiple parts
- Training set
- Used to fit model parameters

Validation set

- Used to check performance on independent data and tune hyper parameters
- Test set
- final evaluation of performance after all hyper-parameters fixed
- Needed since we tune, or "peek", performance with validation set

How to Measure Generalization Error?

- Machine learning uses mathematical and statistical models learned from data to characterize patterns and relations between inputs, and use this for inference / prediction
- Machine learning comes in many forms, much of which has probabilistic and statistical foundations and interpretations (i.e. Statistical Machine Learning)
- Machine learning provides a powerful toolkit to analyze data
- Linear methods can help greatly in understanding data
- Choosing a model for a given problem is difficult, keep in mind the bias-variance tradeoff when building an ML model

Recommended Materials

- Many excellent books (many available free online)
- Introduction to Statistical Learning
- Elements of Statistical Learning
- Pattern Recognition and Machine learning (Bishop)
- ...
- Many excellent courses and documentation available online
- Andre Ng's machine learning course on Coursera
- University course material online: Stanford CS229, Harvard CS181, ...
- Lectures from Machine Learning Summer School (MLSS)
- Lectures from Yandex Machine learning in HEP summer schools
- Scikit Learn documentation
- Francois Fleuret course at University of Geneva
- Gilles Louppe course at University of Liege
- Yann LeCun \& Alfredo Canziani course at NYU
- References:
- I used / borrowed from many of these references to make these lectures!

References

- http://scikit-learn.org/
- [Bishop] Pattern Recognition and Machine Learning, Bishop (2006)
- [ESL] Elements of Statistical Learning (2nd Ed.) Hastie, Tibshirani \& Friedman 2009
- [Murray] Introduction to machine learning, Murray
- http://videolectures.net/bootcamp2010_murray_iml/
- [Ravikumar】 What is Machine Learning, Ravikumar and Stone
- http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSSIntro.pdf
- [Parkes] CS181, Parkes and Rush, Harvard University
- http://cs181.fas.harvard.edu
- $\quad \mathrm{Ng} \rrbracket \mathrm{CS} 229, \mathrm{Ng}$, Stanford University
- http://cs229.stanford.edu/
- [Rogozhnikov] Machine learning in high energy physics, Alex Rogozhnikov
- https://indico.cern.ch/event/497368/
- [Fleuret] Francois Fleuret, EE559 Deep Learning, EPFL, 2018
- https://documents.epfl.ch/users/f/fl/fleuret/www/dlc/

References

- http://scikit-learn.org/
- [Bishop] Pattern Recognition and Machine Learning, Bishop (2006)
- [ESL] Elements of Statistical Learning (2nd Ed.) Hastie, Tibshirani \& Friedman 2009
- [Murray] Introduction to machine learning, Murray
- http://videolectures.net/bootcamp2010_murray_iml/
- [Ravikumar】 What is Machine Learning, Ravikumar and Stone
- http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSSIntro.pdf
- [Parkes] CS181, Parkes and Rush, Harvard University
- http://cs181.fas.harvard.edu
- $\quad \mathrm{Ng} \rrbracket \mathrm{CS} 229, \mathrm{Ng}$, Stanford University
- http://cs229.stanford.edu/
- [Rogozhnikov] Machine learning in high energy physics, Alex Rogozhnikov
- https://indico.cern.ch/event/497368/

Where is ML Used, an Incomplete List

- Natural Language Processing
- Speech and handwriting recognition
- Object recognition and computer vision
- Fraud detection
- Financial market analysis
- Search engines
- Spam and virus detection
- Medical diagnosis
- Robotics control
- Automation: energy usage, systems control, video games, self-driving cars
- Advertising
- Data Science

Predicted Land Usage

[ESL]

Growing Use of Deep Learning at Google

Minor elliptical axis (y) against Major elliptical axis (x) for stars (red) and galaxies (blue). (Amos Storkey) http://www-wfau.roe.ac.uk/sss/

Learning

Training Data

Train

Model

[Ravikumar]

Learning

Training Data

- Supervised Learning

Train

- Classification
- Regression
- Unsupervised Learning
- Clustering
- Dimensionality reduction
- ...
- Reinforcement learning

[Ravikumar]

What we would want to do

$\min _{h \in H} \int L(h(x), y) p(x, y) d x d y$

- Find best function h to minimizes the expected loss
- $L \equiv$ Loss to compare predictions $h(x)$ with target y
$-H \equiv$ Set of functions to search over
$-p(x, y) \equiv$ PDF of data
- But:
- Don't know how to choose the set of functions H
- Don't know how to search over all functions
- Don't know true data distribution $p(x, y)$
- Only have samples of data $\left\{x_{i}, y_{i}\right\}$

Parametric vs. Non-parametric Models

Parametric vs. Non-parametric Models

- Parametric Models:
- Don't grow in complexity w/ dataset size.
- Fixed set of parameters to learn
- Example: sum of Gaussians, each with mean, variance, and normalization

Binary kNN Classification (k=1)

x1
http://bdewilde.github.io/blog/blogger/2012/10/26 Classification-of-hand-written-digits-3/

Bayes Theorem in Pictures

Bayes Theorem in Pictures

... IN PICTURES (FROM BOb COUSINS)
P, Conditional P, and Derivation of Bayes' Theorem in Pictures

$$
\begin{aligned}
& \mathbf{P}(\mathbf{A})=\frac{\square}{\square} \\
& \mathbf{P}(\mathbf{B})=\frac{\square}{\square} \\
& \mathbf{P}(\mathbf{A} \mid \mathbf{B})=\frac{0}{\square} \\
& \mathbf{P}(\mathbf{B} \mid \mathbf{A})=\frac{0}{\square} \\
& \mathbf{P}(\mathbf{A} \cap \mathbf{B})=\frac{0}{\square}
\end{aligned}
$$

$$
\mathbf{P}(\mathbf{A}) \times \mathbf{P}(\mathbf{B} \mid \mathbf{A})=\frac{0}{\square} \times \frac{0}{\bigcirc}=\frac{0}{\square}=\mathbf{P}(\mathbf{A} \cap \mathbf{B})
$$

$$
\mathbf{P}(\mathbf{B}) \times \mathbf{P}(\mathbf{A} \mid \mathbf{B})=\frac{\square}{\square} \times \frac{0}{\square}=\mathbf{P}=\mathbf{P}(\mathbf{A} \cap \mathbf{B})
$$

$$
\Rightarrow P(B \mid A)=P(A \mid B) \times P(B) / P(A)
$$

Gradient Descent

7

How to Minimize Loss $\mathcal{L}(\theta)$? Gradient Descent

- Gradient Descent:

Make a step $\theta \leftarrow \theta+\eta v$ in direction v with step size $\boldsymbol{\eta}$ to reduce loss

- How does loss change in different directions?

Let λ be a perturbation along direction v

$$
\left.\frac{d}{d \lambda} \mathcal{L}(\theta+\lambda v)\right|_{\lambda=0}=v \cdot \nabla_{\theta} \mathcal{L}(\theta)
$$

- Then Steepest Descent direction is: $v=-\nabla_{\theta} \mathcal{L}(\theta)$

Stochastic Gradient Descent

- Loss is composed of a sum over samples:

$$
\nabla_{\theta} \mathcal{L}(\theta)=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \mathcal{L}\left(y_{i}, h\left(x_{i} ; \theta\right)\right)
$$

- Computing gradient grows linearly with N !
- (Mini-Batch) Stochastic Gradient Descent
- Compute gradient update using 1 random sample (small size batch)
- Gradient is unbiased \rightarrow on average it moves in correct direction
- Tends to be much faster the full gradient descent
- Several updates to SGD, like momentum, ADAM, RMSprop to
- Help to speed up optimization in flat regions of loss
- Have adaptive learning rate
- Learning rate adapted for each parameter
- ...

Bias Variance Tradeoff

- Model $\mathrm{h}(\mathrm{x})$, defined over dataset, modeling random variable output y

$$
\begin{aligned}
E[y] & =\bar{y} \\
E[h(x)] & =\bar{h}(x)
\end{aligned}
$$

- Examining generalization error at x, w.r.t. possible training datasets

$$
\begin{array}{rlrl}
E\left[(y-h(x))^{2}\right] & =E\left[(y-\bar{y})^{2}\right] & & +(\bar{y}-\bar{h}(x))^{2} \\
& & +E\left[(h(x)-\bar{h}(x))^{2}\right] \\
& =\text { noise } & & +(\text { bias })^{2}
\end{array} \quad \begin{aligned}
&
\end{aligned}
$$

Bias Variance Tradeoff

- Model $\mathrm{h}(\mathrm{x})$, defined over dataset, modeling random variable output y

$$
\begin{aligned}
E[y] & =\bar{y} \\
E[h(x)] & =\bar{h}(x)
\end{aligned}
$$

- Examining generalization error at x, w.r.t. possible training datasets

$$
\begin{array}{rlll}
E\left[(y-h(x))^{2}\right] & =E\left[(y-\bar{y})^{2}\right] & +(\bar{y}-\bar{h}(x))^{2} & \\
& +E\left[(h(x)-\bar{h}(x))^{2}\right] \\
& =\text { noise } & +(\text { bias })^{2} & \\
\end{array}
$$

Bias Variance Tradeoff

- Model $\mathrm{h}(\mathrm{x})$, defined over dataset, modeling random variable output y

$$
\begin{aligned}
E[y] & =\bar{y} \\
E[h(x)] & =\bar{h}(x)
\end{aligned}
$$

- Examining generalization error at x, w.r.t. possible training datasets

$$
\begin{aligned}
E\left[(y-h(x))^{2}\right] & =E\left[(y-\bar{y})^{2}\right] \\
& + \text { noise }
\end{aligned}+\begin{array}{ll}
(\bar{y}-\bar{h}(x))^{2} & +E\left[(h(x)-\bar{h}(x))^{2}\right] \\
(\text { bias })^{2}
\end{array} \quad+\text { variance }
$$

- The more complex the model $h(x)$ is, the more data points it will capture, and the lower the bias will be.

Bias Variance Tradeoff

- Model $\mathrm{h}(\mathrm{x})$, defined over dataset, modeling random variable output y

$$
\begin{aligned}
E[y] & =\bar{y} \\
E[h(x)] & =\bar{h}(x)
\end{aligned}
$$

- Examining generalization error at x, w.r.t. possible training datasets

$$
\begin{array}{rll}
E\left[(y-h(x))^{2}\right] & =E\left[(y-\bar{y})^{2}\right] & +\sum_{(\bar{y}-\bar{h}(x))^{2}} \\
& + \text { noise } & +\begin{array}{l}
E\left[(h(x)-\bar{h}(x))^{2}\right] \\
(\text { bias })^{2}
\end{array} \\
& + \text { variance }
\end{array}
$$

- The more complex the model $h(x)$ is, the more data points it will capture, and the lower the bias will be.
- More Complexity will make the model "move" more to capture the data points, and hence its variance will be larger.

Bias Variance Tradeoff

- Model $\mathrm{h}(\mathrm{x})$, defined over dataset, modeling random variable output y

$$
\begin{aligned}
E[y] & =\bar{y} \\
E[h(x)] & =\bar{h}(x)
\end{aligned}
$$

- Examining generalization error at x, w.r.t. possible training datasets

$$
\begin{array}{rll}
E\left[(y-h(x))^{2}\right] & =E\left[(y-\bar{y})^{2}\right] & +\sum_{(\bar{y}-\bar{h}(x))^{2}} \\
& + \text { noise } & +\begin{array}{l}
E\left[(h(x)-\bar{h}(x))^{2}\right] \\
(\text { bias })^{2}
\end{array} \\
& + \text { variance }
\end{array}
$$

- The more complex the model $\mathrm{h}(\mathrm{x})$ is, the more data points it will capture, and the lower the bias will be.
- More Complexity will make the model "move" more to capture the data points, and hence its variance will be larger.
- As dataset size grows, can reduce variance! Can use more complex model

Regularization

- Can control the complexity of a model by placing constraints on the model parameters
- Trading some bias to reduce model variance
- L2 norm: $\Omega(\mathbf{w})=\|\mathbf{w}\|^{2}=\sum_{i} w_{i}^{2}$
- "Ridge regression", enforcing weights not too large
- Equivalent to Gaussian prior over weights
- L1 norm: $\Omega(\mathbf{w})=\|\mathbf{w}\|=\sum_{i}\left|w_{i}\right|$
- "Lasso regression", enforcing sparse weights
- Elastic net $\rightarrow \mathrm{L} 1+\mathrm{L}$ 2 constraints

Regularization

Pattern Recognition and Machine Learning C. M. Bishop (2006)

Cross Validation

run 1
run 2

run 3

Validation set
[Bishop]

- Especially when dataset is small, split training set into K-folds
- Train on (K-1) folds, validate on 1 fold, then iterate
- Use average estimated performance on K-folds
- Allows for estimate of performance RMS
- Even when dataset not small, useful technique to estimate variance of expected performance, and for comparing different models / hyperparameters

Multiclass Classification?

- What if there is more than two classes?

Multiclass Classification?

- What if there is more than two classes?

- Softmax \rightarrow multi-class generalization of logistic loss
- Have N classes $\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{N}}\right\}$
- Model target $\mathbf{y}_{\mathrm{k}}=(0, \ldots, 1, \ldots 0) \quad \mathrm{k}^{\mathrm{k}}$ element in vector

$$
p\left(c_{k} \mid x\right)=\frac{\exp \left(\mathbf{w}_{k} x\right)}{\sum_{j} \exp \left(\mathbf{w}_{j} x\right)}
$$

- Gradient descent for each of the weights \mathbf{w}_{k}

Estimating a Classifier Performance

Predicted Positive		Negative
Positive	True Positives (TP)	False Negatives (FN)
Negative	False Positives (FP)	True Negatives (TN)

Confusion Matrix Classifying tau decays

	0.2	2.5	3.6	5.3	56.6
	-0.2	0.6	0.3	92.5	40.2
	0.4	6.0	35.4	0.1	0.4
	9.4	74.8	56.3	0.9	2.5
	-89.7	16.0	4.3	1.2	0.3
	$h^{ \pm}$	$h^{ \pm} \pi^{0}$	$h^{ \pm} \geq 2 \pi^{0}$	$3 h^{ \pm}$	$3 h^{ \pm} \geq 1 \pi^{0}$
Generated decay mode					

Receiver Operating Characteristic (ROC) Curve classifying quarks vs. gluons

