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Long History of  Machine Learning 3

Vinyals et. al. 2019Rosenblatt 1958, 1960

𝑓 𝑥 = $
1 𝑖𝑓 '

!

𝑤!𝑥! + 𝑏 ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Perceptron AlphaStar

https://www.nature.com/articles/s41586-019-1724-z
https://psycnet.apa.org/doiLanding?doi=10.1037%2Fh0042519
https://apps.dtic.mil/dtic/tr/fulltext/u2/236965.pdf


Machine Learning in HEP 4

Particle Tagging

Simulation Based Inference

Uncertainty Mitigation

Signal Classification

Fast S
imulation

Design Optimization

+ More! Check out The Living Review of ML in HEP

Unfolding

Anomaly Detection

https://iml-wg.github.io/HEPML-LivingReview/


What is Machine Learning?

• Giving computers the ability to learn without 
explicitly programming them (Arthur Samuel, 1959)

• Statistics + Algorithms

• Computer Science + Probability + Optimization 
Techniques

• Fitting data with complex functions

• Mathematical models learnt from data that 
characterize the patterns, regularities, and 
relationships amongst variables in the system 
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Machine Learning: Models

• Key element is a mathematical model

– A mathematical characterization of  system(s) of  interest, 
typically via random variables

– Chosen model depends on the task / available data

• Learning: estimate statistical model from data
– Supervised learning
– Unsupervised Learning
– Reinforcement Learning
– …

• Prediction and Inference: using statistical model to 
make predictions on new data points and infer 
properties of  system(s) 
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Supervised Learning

• Given N examples with observable features {xi Î X} and 
prediction targets {yi Î Y}, learn function mapping h(x)=y

7

Classification: 
Y is a finite set of labels (i.e. classes) 
denoted with integers

x

y

Regression: 
Y is a real number



Unsupervised Learning

Given some data D={xi}, but no labels, find structure in data

Clustering: partition the data into 
groups D={D1 È D2 È D3 … È Dk}
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[Bishop] 

Dimensionality reduction: find a low 
dimensional (less complex) representation 
of  the data with a mapping Z=h(X)

Image Credit - Link

Density estimation and sampling: 
estimate the PDF p(x), and/or learn to 
draw plausible new samples of  x

https://lazyprogrammer.me/tutorial-principal-components-analysis-pca/


Reinforcement Learning

• Models for agents that take actions depending on 
current state
• Actions incur rewards, and affect future states 

(“feedback”) 

• Learn to make the best sequence of  decisions to 
achieve a given goal when feedback is often delayed 
until you reach the goal

9

[Ravikumar] 



Deep Reinforcement Learning with AlphaGo 10

Nature 529, 484–489 (28 January 2016)



Brief  Review of  Probability and Statistics 11



Probability Mass Function

Probability Mass Function for Discrete random variables (r.v.)

𝑃 𝑥! = 𝑝!

– Prob. of  ith outcome: limit of  long term frequency lim
!→#

# %!
! &'()*+

– Normalized: ∑( 𝑃 𝑥( = 1

Bernoulli Distribution:   P 𝑥 = 𝑝" 1 − 𝑝 #$"

– 𝑥 ∈ {0,1} 1≡HEADS, 0≡ TAILS
– Biased coin with heads prob. 𝑝 ∈ [0,1]
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Slide Credit: K. Cranmer: Intro to Stats.

https://indico.fnal.gov/event/43762/timetable/


Probability Mass and Density Functions

Probability Density Function (PDF) for Continuous r.v.

𝑃 𝑥 ∈ 𝑥, 𝑥 + 𝑑𝑥 = 𝑓 𝑥 𝑑𝑥

– Normalized: ∫!"
" 𝑓 𝑥 𝑑𝑥 = 1

Cumulative Distribution Function

F! x = 𝑃 𝑋 < 𝑥 = ∫"#
$ 𝑓 𝑡 𝑑𝑡

– Density defined as: 𝑓 𝑥 = #$!(&)
#&
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Slide Credit: K. Cranmer: Intro to Stats.

https://indico.fnal.gov/event/43762/timetable/


Expected Values

• Expected value of  a function of  random variables

Ε 𝑔 𝑥 = %
"#

#
𝑔 𝑥 𝑝 𝑥 𝑑𝑥

• Mean of  a r.v. :   Ε 𝑥 = �̅� = ∫"#
# 𝑥 𝑝 𝑥 𝑑𝑥

• Variance:   𝑉𝑎𝑟 𝑋 = Ε 𝑥 − Ε 𝑥 % = Ε 𝑥% − Ε 𝑥 %

• Covariance of  two r.v.’s: 𝐶𝑜𝑣 𝑥, 𝑦 = Ε 𝑥 − Ε 𝑥 𝑦 − Ε 𝑦
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Expected Values

• Expected value of  a function of  random variables

Ε 𝑔 𝑥 = %
"#

#
𝑔 𝑥 𝑝 𝑥 𝑑𝑥

• Often we can’t compute this integral
• Or often in Machine Learning we don’t know 𝑝(𝑥)

• With set of  N repeated observations {𝑥&} that are 
independent and identically distributed, can approximate 
with Empirical Estimator

Ε 𝑔 𝑥 ≈
1
𝑁6
&'(

)

𝑔(𝑥&)
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Parametric Models

• PDF often depends on parameters 𝜃 we are interested in
– Write the density as 𝑓(𝑥|𝜃) or 𝑓(𝑥; 𝜃)

Discrete: Poisson Distribution:   

𝑃𝑜𝑖𝑠𝑠 𝑘|𝜆 = *!+"#

,!
– Prob. of  𝑘 events in fixed interval of  time
– 𝜆 = average number of  events

Continuous: Gaussian Distribution: 

G 𝑥|𝜇, 𝜎 = (
%./

𝑒"
$"% &

&'&

– 𝜇 is	the	average	value
– 𝜎! is the variance
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Image source: Wikipedia



Likelihood Function

• Given value 𝑥 = 𝑥′ to evaluate PDF, can consider 
it as a continuous function of  the parameters 𝜃

Poisson Example:  Likelihood of  𝜇 given 𝑛

𝐿 𝜇 = 𝑃𝑜𝑖𝑠𝑠(𝑛|𝜇)

– Continuous function of  𝜇
– NOTE: not a PDF

– Common to examine − ln 𝐿
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Slide Credit: K. Cranmer: Intro to Stats.

https://indico.fnal.gov/event/43762/timetable/


Likelihood with Repeated Observations

• Given a set of  repeated observations of  𝑥 that are 
independent and identically distributed
– Repeated observations written {𝑥&}
– 𝑥~𝑓(𝑥|𝜃) means the 𝑥 follows distribution 𝑓(𝑥|𝜃)

• Likelihood

𝐿 𝜃 =/
!

𝑓(𝑥!|𝜃)

• Log-likelihood

ln 𝐿 𝜃 =3
!

ln 𝑓(𝑥!|𝜃)
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Slide Credit: K. Cranmer: Intro to Stats.

https://indico.fnal.gov/event/43762/timetable/


Maximum Likelihood

• Given observations {𝑥&} and model PDF 𝑓(𝑥|𝜃) the 
maximum likelihood estimator for 𝜃 is:

𝜃∗ 𝑥 = argmax
?
𝐿 𝜃 = argmin

?
− ln 𝐿(𝜃)
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Maximum Likelihood 20

𝜆

−
ln
𝐿(
𝜆)

Example: Exponential 𝑝 𝑥; 𝜆 = 𝜆𝑒"*$

− ln 𝐿 𝜆 = ∑&'(@ − ln 𝜆 + 𝜆𝑥&
= −𝑛 ln 𝜆 + 𝜆∑& 𝑥&

Finding Minimum:

0 = #(! -. /(0))
#0 = !1

0 + ∑2 𝑥2
→ 𝜆∗ 𝑥2 = 1

∑# &_2

• Given observations {𝑥&} and model PDF 𝑓(𝑥|𝜃) the 
maximum likelihood estimator for 𝜃 is:

𝜃∗ 𝑥 = argmax
?
𝐿 𝜃 = argmin

?
− ln 𝐿(𝜃)



Bayes Rule

• Given two r.v. with join density 𝑝(𝑥, 𝑦)
• Marginal distribution: 𝑝 𝑥 = ∫"#

# 𝑝 𝑥, 𝑦 𝑑𝑦

• Conditional distribution: 𝑝 𝑥 𝑦 = $(&,()
$(()

• Bayes Rule: 𝑝 𝑦 𝑥 = $ 𝑥 𝑦 $(()
$(&)

– 𝑝(𝑦) is the “prior” in that is doesn’t account for 𝑥
– 𝑝(𝑥|𝑦) is the “likelihood” of  observing 𝑥 given 

knowledge of  𝑦
– 𝑝(𝑥) acts as the normalizing constant
– 𝑝 𝑦 𝑥 is often denoted the “posterior” because it is 

derived from knowledge of  𝑥

21

See Backup for visual proof of Bayes TheoremSlide Credit: K. Cranmer: Intro to Stats.

https://indico.fnal.gov/event/43762/timetable/


Supervised Learning: How does it work? 22



Supervised Learning: How does it work?

• Design function with adjustable parameters

• Design a Loss function

• Find best parameters which minimize loss

23

h(x; w)
Function with 

adjustable 
parameters

Loss 
Function

Compare 
prediction 
with true 

label

Loss
True labels:
Higgs = 1
Bkg = 0

Y. Le Cun

L(W,X)



Supervised Learning: How does it work?

• Design function with adjustable parameters

• Design a Loss function

• Find best parameters which minimize loss
– Use a labeled training-set to compute loss

– Adjust parameters to reduce loss function

– Repeat until parameters stabilize

24

h(x; w)
Function with 

adjustable 
parameters

Loss 
Function

Compare 
prediction 
with true 

label

Loss
True labels:
Higgs = 1
Bkg = 0

Y. Le Cun

L(W,X)



Empirical Risk Minimization

min
*

1
𝑁
3
!

+

𝐿(ℎ 𝑥!; 𝑤 , 𝑦!) + 𝜆Ω(𝑤)

25

Empirical expected loss Model regularization

• Find best weights 𝑤 to minimizes the expected loss
– 𝐿 ≡ Loss to compare predictions ℎ(𝑥) with target 𝑦
– ℎ(𝑥;𝑤) ≡ parameterized family of  functions
– Ω(𝑤) ≡ regularization to penalize certain values of  𝑤
– 𝜆 ≡ Hyperparameter to control penalty
– Use empirical estimate of  expected loss over data {𝑥2, 𝑦2}

• Framework to design learning algorithms

• Learning is cast as an optimization problem
– Searching over parameter space



Example Loss Functions

• Square Error Loss: 
– Often used in regression

• Cross entropy:
– With y Î {0,1}
– Often used in classification

• Hinge Loss: 
– With y Î {-1,1}

• Zero-One loss
– With h(x; w) predicting label

26

L(h(x;w), y) =
�
h(x;w)� y

�2

L(h(x;w), y) =� y log h(x;w)

� (1� y) log(1� h(x;w))

L(h(x;w), y) = max(0, 1� yh(x;w))

L(h(x;w), y) = 1y 6=h(x;w)

- Square Error
- Cross Entropy
- Hinge
- Zero-one

[Bishop] 



Least Squares Linear Regression 27



Least Squares Linear Regression

• Set of  input / output pairs D = {xi , yi}i=1…n

– xi Î Rm

– yi Î R

• Assume a linear model      
h(x; w) = wTx

• Squared Loss function:

• Find w* = arg minw L(w)  

28

L(w) =
1

2

X

i

�
yi � h(xi;w)

�2



Least Squares Linear Regression: Matrix Form

• Set of  input / output pairs D = {xi , yi}i=1…n

– Design matrix X Î Rnxm

– Target vector y Î Rn

29



• Rewrite loss:

• Minimize w.r.t. w:

Least Squares Linear Regression: Matrix Form

• Set of  input / output pairs D = {xi , yi}i=1…n

– Design matrix X Î Rnxm

– Target vector y Î Rn

30

L(w) =
1

2
(y�Xw)T (y�Xw)

w⇤ = (XTX)�1XTy = argmin
w

L(w)



Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error: 
– Noisy measurements, unmeasured variables, …

31

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆



Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error: 
– Noisy measurements, unmeasured variables, …

• Then 

32

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)2

�2

◆



Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error: 
– Noisy measurements, unmeasured variables, …

• Then 

• Likelihood function:

33

L(m) = p(y|X;m) =
Y

i

p(yi|xi;m)

! � logL(m) ⇠
X

i

(yi �mxi)
2

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)2

�2

◆



Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error: 
– Noisy measurements, unmeasured variables, …

• Then 

• Likelihood function:

34

Squared
loss function!

L(m) = p(y|X;m) =
Y

i

p(yi|xi;m)

! � logL(m) ⇠
X

i

(yi �mxi)
2

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)2

�2

◆



Linear Regression Example

• Reconstructed Jet energy vs. Number of  primary vertices

35

Eur. Phys. J. C (2015) 75:17



Linear Classification 36



Classification

• Learn a function to separate 
different classes of  data

• Avoid over-fitting:
– Learning too fined details about 

your training sample that will 
not generalize to unseen data

37

Linear discriminant Nonlinear discriminantRectangular cuts

y=0

y=1

x1

x2

x1

x2 y=0

y=1

x1

x2

y=0

y=1

x1

x2

y=0

y=1

[H. Voss]



Linear Decision Boundaries
• Separate two classes:
– xi Î Rm

– yi Î {-1,1}

• Linear discriminant model
h(x; w) = wTx+b

38

h(x)

• Decision boundary defined by hyperplane

h(x; w) = wTx+b = 0

• Class predictions: Predict class 0 if  h(xi ; w) < 0, else class 1

[Bishop]

h(x) < 0

h(x) = 0

h(x) > 0



Linear Classifier with Least Squares?

• Why not use least squares loss with binary targets?

39

L(w) =
1

2

X

i

(yi �wTxi)
2

[Bishop]



Linear Classifier with Least Squares?

• Why not use least squares loss with binary targets?
– Penalized even when predict class correctly
– Least squares is very sensitive to outliers

40

L(w) =
1

2

X

i

(yi �wTxi)
2

What you want

What you get

[Bishop]



Linear Discriminant Analysis 41

• Goal: Separate data from two classes / populations

• Data from joint distribution (x, y) ~ p(X, Y)
– Features: x Î Rm

– Labels:        y Î {0,1}

Red: Y=0 Blue: Y=1

x2

x1



Linear Discriminant Analysis 42

• Goal: Separate data from two classes / populations

• Data from joint distribution (x, y) ~ p(X, Y)
– Features: x Î Rm

– Labels:        y Î {0,1}

• Breakdown the joint distribution:
𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝(𝑦)

Likelihood:
Distribution of features
for a given class

Prior:
Probability of each class



Linear Discriminant Analysis 43

• Goal: Separate data from two classes / populations

• Data from joint distribution (x, y) ~ p(X, Y)
– Features: x Î Rm

– Labels:        y Î {0,1}

• Breakdown the joint distribution:
𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝(𝑦)

• Assume likelihoods are Gaussian

𝑝 𝑥 𝑦 =
1

2𝜋 6|Σ|
exp −

1
2
𝒙 − 𝝁7

8Σ!9(𝒙 − 𝝁7)



Predicting the Class

• Separating classes à Predict the class 𝑦 of  a point x

44

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣

log p(x|y=0)p(y=0)
log p(x|y=1)p(y=1)

⌘



Predicting the Class

• Separating classes à Predict the class of  a point x

45

Bayes Rulep(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣

log p(x|y=0)p(y=0)
log p(x|y=1)p(y=1)

⌘



Predicting the Class

• Separating classes à Predict the class of  a point x

46

Bayes Rule

Marginal
definition

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣

log p(x|y=0)p(y=0)
log p(x|y=1)p(y=1)

⌘



p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣
log p(x|y=0)p(y=0)

p(x|y=1)p(y=1)

⌘

Predicting the Class

• Separating classes à Predict the class of  a point x

47

Bayes Rule

Why?

Marginal
definition



Logistic Sigmoid Function 48

Logistic Sigmoid

�(z) =
1

1 + e�z



Predicting Classes with Gaussian Likelihoods 49

p(y = 1|x) = �
⇣
log

p(x|y = 1)

p(x|y = 0)
+ log

p(y = 1)

p(y = 0)

⌘

Constant w.r.t. xLog-likelihood ratio



Predicting Classes with Gaussian Likelihoods

• For our Gaussian data:

50

p(y = 1|x) = �
⇣
log

p(x|y = 1)

p(x|y = 0)
+ log

p(y = 1)

p(y = 0)

⌘

= �
⇣
log p(x|y = 1)� log p(x|y = 0) + const.

⌘

= �
⇣
� 1

2
(x� µ1)

T⌃�1(x� µ1) +
1

2
(x� µ0)

T⌃�1(x� µ0)

+ const.
⌘

= �
⇣
wTx+ b

⌘
Collect terms



What did we learn?

• For this data, the log-likelihood ratio is linear!
– Line defines boundary to separate the classes
– Sigmoid turns distance from boundary to probability

51

Red: Y=0 Blue: Y=1

x2

x1



Logistic Regression 52

p(y = 1|x) = �
⇣
wTx+ b

⌘
p(y = 1|x) = �(h(x,w))

=
1

1 + e�wTx -b

This unit is the main building block of  Neural Networks!



Logistic Regression

• Even without Gaussian assumption on data, can 
still use model as classifier:

53

• How to train model? Use Maximum Likelihood
– Define:  𝑝2 ≡ 𝑝(𝑦2 = 𝑦|𝒙2)

P (yi = y|xi) = Bernoulli(pi) = (pi)
yi(1� pi)

1�yi = pi if  yi=1
1-pi if  yi=0

• Goal:
– Given i.i.d. dataset of  pairs (xi, yi)

find w and b that maximize likelihood of  data

p(y = 1|x) = �
⇣
wTx+ b

⌘
⌘ h(x;w)



Logistic Regression

• Negative log-likelihood

54

� lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�wTx) + (1� yi) ln(1 + ew
Tx)



Logistic Regression

• Negative log-likelihood

55

binary cross entropy loss function! � lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�wTx) + (1� yi) ln(1 + ew
Tx)

Lo
ss

-log(pi)
-log(1-pi)

pi



Logistic Regression

• Negative log-likelihood

56

• No closed form solution to 𝑤∗ = argmin
A
− lnℒ(𝑤)

• How to solve for w?

binary cross entropy loss function! � lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�wTx) + (1� yi) ln(1 + ew
Tx)



Gradient Descent

• Minimize loss by repeated gradient steps

– Compute gradient w.r.t. current parameters:    ∇?(ℒ 𝜃&

– Update parameters:      𝜃&B( ← 𝜃& − 𝜂∇?(ℒ 𝜃&

– h is the learning rate, controls how big of  a step to take

57

𝜃!

𝜃"



Step Sizes

• Too small a learning rate, convergence very slow

• Too large a learning rate, algorithm diverges

58

𝜃

ℒ(𝜃)

Small Learning rate

𝜃

ℒ(𝜃)

Large Learning rate



Stochastic Gradient Descent
• Loss is composed of  a sum over samples: 

∇:ℒ 𝜃 =
1
𝑁
'
2;9

<

∇:ℒ 𝑦2 , ℎ 𝑥2; 𝜃

– Computing gradient grows linearly with N!

• (Mini-Batch) Stochastic Gradient Descent
– Compute gradient update using 1 random sample (small size batch) 
– Gradient is unbiased à on average it moves in correct direction
– Tends to be much faster the full gradient descent
– Several updates to SGD, like momentum, ADAM, RMSprop

59



Gradient Descent

• Logistic Regression Loss is convex
– Single global minimum

• Iterations lower loss and move toward minimum

60

Lo
ss

L(w)

Lmin(w)

Iterationsw



Logistic Regression Example 61

p(y=1 | x)
0 1

Image source

https://triangleinequality.wordpress.com/2013/12/02/logistic-regression/


Basis Functions

• What if  non-linear relationship between y and x?
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Basis Functions

• What if  non-linear relationship between y and x?

• Can choose basis functions f(x) to form new features

ℎ(𝑥;𝑤) = 𝜎 𝑤!𝜙 𝑥

– Polynomial basis f(x) ~ {1, x, x2, x3, …}, 
Gaussian basis, …

– Logistic regression on new features f(x) 
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Basis Functions

• What if  non-linear relationship between y and x?

• Can choose basis functions f(x) to form new features

ℎ(𝑥;𝑤) = 𝜎 𝑤!𝜙 𝑥

– Polynomial basis f(x) ~ {1, x, x2, x3, …}, 
Gaussian basis, …

– Logistic regression on new features f(x) 

• What basis functions to choose? Overfit with too much flexibility?
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What is Overfitting

• What models allow us to do is generalize from data

• Different models generalize in different ways
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http://scikit-learn.org/

http://scikit-learn.org/


Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of  prediction
(bias) (variance)
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Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of  prediction
(bias) (variance)

• Simple models under-fit: will deviate from data (high 
bias) but will not be influenced by peculiarities of  data 
(low variance). 
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Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of  prediction
(bias) (variance)

• Simple models under-fit: will deviate from data (high 
bias) but will not be influenced by peculiarities of  data 
(low variance). 

• Complex models over-fit: will not deviate systematically 
from data (low bias) but will be very sensitive to data 
(high variance). 
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Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of  prediction
(bias) (variance)

• Simple models under-fit: will deviate from data (high 
bias) but will not be influenced by peculiarities of  data 
(low variance). 

• Complex models over-fit: will not deviate systematically 
from data (low bias) but will be very sensitive to data 
(high variance). 
– As dataset size grows, can reduce variance! Can use more 

complex model
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Regularization – Control Complexity

• L2 keeps weights small,  L1 keeps weights sparse!

• But how to choose hyperparameter a? 

71

L(w) =
1

2
(y�Xw)2 + ↵⌦(w)

L2 : ⌦(w) = ||w||2 L1 : ⌦(w) = ||w||

http://scikit-learn.org/

Less regularization Less regularization

http://scikit-learn.org/


How to Measure Generalization Error?

• Split dataset into multiple parts

• Training set
– Used to fit model parameters

• Validation set
– Used to check performance on 

independent data and tune 
hyper parameters

• Test set
– final evaluation of  performance 

after all hyper-parameters fixed
– Needed since we tune, or “peek”, 

performance with validation set
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Training set Validation set Test set

[Murray] 



How to Measure Generalization Error? 73

Validation Sample



Summary

• Machine learning uses mathematical and statistical 
models learned from data to characterize patterns 
and relations between inputs, and use this for 
inference / prediction

• Machine learning comes in many forms, much of  
which has probabilistic and statistical foundations 
and interpretations (i.e. Statistical Machine Learning)

• Machine learning provides a powerful toolkit to 
analyze data
– Linear methods can help greatly in understanding data

– Choosing a model for a given problem is difficult, keep in 
mind the bias-variance tradeoff  when building an ML 
model
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Recommended Materials

• Many excellent books (many available free online)
– Introduction to Statistical Learning
– Elements of  Statistical Learning
– Pattern Recognition and Machine learning (Bishop)
– …

• Many excellent courses and documentation available online
– Andre Ng’s machine learning course on Coursera
– University course material online: Stanford CS229, Harvard CS181, …
– Lectures from Machine Learning Summer School (MLSS)
– Lectures from Yandex Machine learning in HEP summer schools
– Scikit Learn documentation
– Francois Fleuret course at University of  Geneva
– Gilles Louppe course at University of  Liege
– Yann LeCun & Alfredo Canziani course at NYU

• References:
– I used / borrowed from many of  these references to make these lectures!
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https://fleuret.org/dlc/
https://github.com/glouppe/info8010-deep-learning
https://atcold.github.io/pytorch-Deep-Learning/
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Where is ML Used, an Incomplete List
• Natural Language Processing
• Speech and handwriting 

recognition
• Object recognition and computer 

vision
• Fraud detection
• Financial market analysis
• Search engines
• Spam and virus detection
• Medical diagnosis
• Robotics control
• Automation: energy usage, 

systems control, video games, 
self-driving cars

• Advertising
• Data Science 
• …
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http://www-wfau.roe.ac.uk/sss/

[ESL] 

http://www-wfau.roe.ac.uk/sss/
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[Ravikumar] 



Learning 81

• Supervised Learning
– Classification
– Regression

• Unsupervised Learning
– Clustering
– Dimensionality reduction
– …

• Reinforcement learning
[Ravikumar] 



What we would want to do

min
7∈8

∫ 𝐿 ℎ 𝑥 , 𝑦 𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦

• Find best function ℎ to minimizes the expected loss
– 𝐿 ≡ Loss to compare predictions ℎ(𝑥) with target 𝑦
– 𝐻 ≡ Set of  functions to search over
– 𝑝 𝑥, 𝑦 ≡ PDF of  data

• But:
– Don’t know how to choose the set of  functions 𝐻
– Don’t know how to search over all functions
– Don’t know true data distribution 𝑝(𝑥, 𝑦)
– Only have samples of  data {𝑥! , 𝑦!}
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Parametric vs. Non-parametric Models
• Parametric Models: 
– Don’t grow in complexity w/ 

dataset size.  
– Fixed set of  parameters to learn
• Example: sum of  Gaussians, each 

with mean, variance, and 
normalization

• Non-Parametric Models: 
– Grow in complexity w/ more 

data
– Don’t have a fixed set of  

parameters, 
• Example: Nearest-Neighbors
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http://bdewilde.github.io/blog/blogger/2012/10/26
/classification-of-hand-written-digits-3/

http://bdewilde.github.io/blog/blogger/2012/10/26/classification-of-hand-written-digits-3/
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Bayes Theorem in Pictures 86

K. Cranmer: Intro to Stats.

https://indico.fnal.gov/event/43762/timetable/
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How to Minimize Loss ℒ 𝜃 ? Gradient Descent

• Gradient Descent: 

Make a step 𝜃 ← 𝜃 + 𝜂𝑣 in direction 𝑣 with step 
size 𝜼 to reduce loss

• How does loss change in different directions?

Let 𝜆 be a perturbation along direction 𝑣

G
𝑑
𝑑𝜆
ℒ 𝜃 + 𝜆𝑣

,-.
= 𝑣 ⋅ ∇/ℒ 𝜃

• Then Steepest Descent direction is: 𝑣 = −∇/ℒ 𝜃
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Stochastic Gradient Descent
• Loss is composed of  a sum over samples: 

∇"ℒ 𝜃 =
1
𝑁
'
#$%

&

∇"ℒ 𝑦# , ℎ 𝑥#; 𝜃

– Computing gradient grows linearly with N!

• (Mini-Batch) Stochastic Gradient Descent
– Compute gradient update using 1 random sample (small size batch) 
– Gradient is unbiased à on average it moves in correct direction
– Tends to be much faster the full gradient descent

• Several updates to SGD, like momentum, ADAM, RMSprop to
– Help to speed up optimization in flat regions of  loss
– Have adaptive learning rate
– Learning rate adapted for each parameter
– …
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Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y
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E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance



Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y
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E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

Intrinsic noise in system or measurements
Can not be avoided or improved with modeling
Lower bound on possible noise



Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y
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E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

• The more complex the model h(x) is, the more data points it will 
capture, and the lower the bias will be. 



Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y
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E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

• The more complex the model h(x) is, the more data points it will 
capture, and the lower the bias will be. 

• More Complexity will make the model "move" more to capture the 
data points, and hence its variance will be larger.



Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y
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E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

• The more complex the model h(x) is, the more data points it will 
capture, and the lower the bias will be. 

• More Complexity will make the model "move" more to capture the 
data points, and hence its variance will be larger.
– As dataset size grows, can reduce variance! Can use more complex model
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Regularization

• Can control the complexity of  a model by placing 
constraints on the model parameters
– Trading some bias to reduce model variance

• L2 norm:

– “Ridge regression”, enforcing weights not too large
– Equivalent to Gaussian prior over weights

• L1 norm:

– “Lasso regression”, enforcing sparse weights

• Elastic net → L1 + L2 constraints
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⌦(w) = ||w||2 =
X

i

w2
i

⌦(w) = ||w|| =
X

i

|wi|
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L1 Contours L2 Contours

Loss



Cross Validation

• Especially when dataset is small, split training set into K-folds
– Train on (K-1) folds, validate on 1 fold, then iterate
– Use average estimated performance on K-folds
– Allows for estimate of  performance RMS

• Even when dataset not small, useful technique to estimate 
variance of  expected performance, and for comparing different 
models / hyperparameters
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Training set

Validation set

[Bishop]
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Multiclass Classification? 101

• What if  there is more than two classes?



Multiclass Classification?
• What if  there is more than two classes?

• Softmax→ multi-class generalization of  logistic loss
– Have N classes {c1, …, cN}
– Model target yk = (0, …, 1, …0)

– Gradient descent for each of  the weights wk
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kth element in vector

p(ck|x) =
exp(wkx)P
j exp(wjx)



Estimating a Classifier Performance 103

Confusion Matrix
Classifying tau decays

arXiv:1702.00414arXiv:1512.05955

Receiver Operating Characteristic (ROC) Curve
classifying quarks vs. gluons 
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