
Introduction to Machine Learning
Lecture 2

Michael Kagan

SLAC

Hadron Collider Physics Summer School
August 23, 2021

Outline

• Lecture 1
– Brief introduction to probability and statistics
– Introduction to Machine Learning fundamentals
– Linear Models

• Lecture 2
– Neural Networks
– Deep Neural Networks
– Convolutional, Recurrent, and Graph Neural Networks

• Lecture 3
– Unsupervised Learning
– Autoencoders
– Generative Adversarial Networks and Normalizing Flows

2

Adding non-linearity to Logistic Regression

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g: f(x) ~ {x2, sin(x), log(x), …}

3

p(y = 1|x) = 1

1 + e�wT�(x)

Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g: f(x) ~ {x2, sin(x), log(x), …}

• What if we don’t know what basis functions we want?

4

p(y = 1|x) = 1

1 + e�wT�(x)

Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g: f(x) ~ {x2, sin(x), log(x), …}

• What if we don’t know what basis functions we want?

• Learn the basis functions directly from data

f(x; u) Rm → Rd

– Where u is a set of parameters for the transformation

5

p(y = 1|x) = 1

1 + e�wT�(x)

Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g: f(x) ~ {x2, sin(x), log(x), …}

• What if we don’t know what basis functions we want?

• Learn the basis functions directly from data

f(x; u) Rm → Rd

– Where u is a set of parameters for the transformation

– Combines basis selection and learning
– Several different approaches, focus here on neural networks
– Complicates the optimization

6

p(y = 1|x) = 1

1 + e�wT�(x)

Neural Networks

• Define the basis functions j = {1…d}

fj(x; u) = s(uj
Tx)

7

Neural Networks

• Define the basis functions j = {1…d}

fj(x; u) = s(uj
Tx)

• Put all uj Î R1xm vectors into matrix U

f(x; U) = s(Ux) = Î Rd

– s is a point-wise non-linearity acting on each vector element

8

s(u1Tx)
s(u2Tx)

…
s(udTx)

Neural Networks

• Define the basis functions j = {1…d}

fj(x; u) = s(uj
Tx)

• Put all uj Î R1xm vectors into matrix U

f(x; U) = s(Ux) = Î Rd

– s is a point-wise non-linearity acting on each vector element

• Full model becomes
h(x; w, U) = wTf(x; U)

9

s(u1Tx)
s(u2Tx)

…
s(udTx)

Feed Forward Neural Network 10

�(x) = �(Ux)

h(x) = wT�(x)

U

Hidden layer
Composed of neurons

𝜎(…) often called the
activation function

Multi-layer Neural Network

• Multilayer NN
– Each layer adapts basis functions based on previous layer

11

U V

Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

• Regression: Square error loss function

• Minimize loss with respect to weights w, U

12

h(x) = wT�(Ux)

L(w,U) =
1

2

X

i

(yi � h(xi))
2

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

Minimizing loss with gradient descent:

• Parameter update:

𝑤 ← 𝑤 − 𝜂
𝜕𝐿 𝑤, 𝑈
𝜕𝑤

𝑈 ← 𝑈 − 𝜂
𝜕𝐿(𝑤, 𝑈)
𝜕𝑈

• How to compute gradients?

– In principle, we could compute them analytically, but
the resulting expressions quickly get out of hand, are
hard to simplify, and can drain memory

13

Automatic Differentiation 14

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%

𝑑𝑤!
𝑑𝑥!

= 1

𝑑𝑤"
𝑑𝑥"

= 1

𝑑𝑤#
𝑑𝑤!

= 𝑤"
𝑑𝑤#
𝑑𝑤"

= 𝑤!
𝑑𝑤$
𝑑𝑤!

= cos(𝑤!)

𝑑𝑤%
𝑑𝑤#

= 1
𝑑𝑤%
𝑑𝑤$

= 1

Organize function as computational
graph of elementary operations

Evaluate blocks and their derivatives,
and apply chain rule:

𝑑𝑧
𝑑𝑤!

= -
&∈&()*+,-

𝑑𝑧
𝑑𝑤&

𝑑𝑤&
𝑑𝑤.

𝑧 = sin 𝑥! + 𝑥!𝑥"

Forward Mode Automatic Differentiation

Backward Mode Automatic Differentiation

See Backup for more details

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

Backpropagation

• Loss function composed of layers of nonlinearity

• Forward step (f-prop)
– Compute and save intermediate computations

• Backward step (b-prop)

• Compute parameter gradients

15

@L

@�a
=

X

j

@�(a+1)
j

@�a
j

@L

@�(a+1)
j

@L

@wa
=

X

j

@�a
j

@wa

@L

@�a
j

𝐿 𝜙! …𝜙" 𝑥

𝜙! …𝜙" 𝑥

Training

• Repeat gradient update of weights to reduce loss
– Each iteration through dataset is called an epoch

• Use validation set to examine for overtraining, and
determine when to stop training

16

[graphic from H. Larochelle]

Vanishing Gradients

• Major challenge in DL: Vanishing Gradients

• Small gradients slow down / block, stochastic
gradient descent à Limits ability to learn!

17

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Gradients for layers far from the output vanish to zero.Slide credit: G. Louppe

Sigmoid Gradient

https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md

Activation Functions

• Vanishing gradient problem
– Derivative of sigmoid:

– Nearly 0 when x is far from 0!
– Can make gradient descent hard!

18

∂σ (x)
∂x

=σ (x)(1−σ (x))

• Rectified Linear Unit (ReLU)
– ReLU(x) = max{0, x}
– Derivative is constant!

– ReLU gradient doesn’t vanish

∂ReLU(x)
∂x

= 1
0

when x > 0
otherwise

"
#
$

%$

Neural Network Decision Boundaries 19

x1

x2

4-class classification
2-hidden layer NN
ReLU activations
L2 norm regularization

2-class classification
1-hidden layer NN
L2 norm regularization

One neuron Two neuron

Three neurons Four neurons

Five neurons Twenty neurons

Fifty neurons

Image source Image source

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r

Universal approximation theorem

• Feed-forward neural network with a single hidden
layer containing a finite number of non-linear
neurons (ReLU, Sigmoid, and others) can
approximate continuous functions arbitrarily well
on a compact space of ℝ!

20

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Universal approximation theorem

• Feed-forward neural network with a single hidden
layer containing a finite number of non-linear
neurons (ReLU, Sigmoid, and others) can
approximate continuous functions arbitrarily well
on a compact space of ℝ!

21

• NOTE!
– A better approximation requires a larger hidden layer and this

theorem says nothing about the relation between the two.

– We can make training error as low as we want by using a larger
hidden layer. Result states nothing about test error

– Doesn’t say how to find the parameters for this approximation

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Deep Neural Networks

• As data complexity grows, need exponentially large number of neurons in
a single-hidden-layer network to capture all structure in data

• Deep neural networks factorize the learning of structure in data across
many layers

• Difficult to train, only recently possible with large datasets, fast computing
(GPU / TPU) and new training procedures / network structures

22

Neural Network Zoo

• Structure of the networks, and
the node connectivity can be
adapted for problem at hand

• Moving inductive bias from
feature engineering to model
design

– Inductive bias:
Knowledge about the problem

– Feature engineering:
Hand crafted variables

– Model design:
The data representation and the
structure of the machine
learning model / network

23

Image credit: neural-network-zoo

http://www.asimovinstitute.org/neural-network-zoo/

Convolutional Neural Networks 24

Convolutional Neural Networks

• When the structure of data includes “invariance
to translation”, a representation meaningful at a
certain location can / should be used everywhere

25

Fleuret, Deep Learning Course

• Covolutional layers build on this idea, that the
same “local” transformation is applied everywhere
and preserves the signal structure

https://fleuret.org/dlc/

1D Convolutional Layer Example 26

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

1D Convolutional Layers

• Data: 𝑥 ∈ ℝ"

• Convolutional kernel of width k: 𝑢 ∈ ℝ#

• Convolution 𝑥 ⊛ 𝑢 is vector of size M-k+1

27

𝑥 ⊛ u 4 = %
567

89:

𝑥4;5𝑢5

• Scan across data and multiply by kernel elements

Convolutional Filters 28

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

2D Convolution Over Multiple Channels 29

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

2D Convolution Over Multiple Channels 30

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

2D Convolution Over Multiple Channels 31

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

2D Convolutional Layer

• Input data (tensor) x of size C×𝐻×𝑊
– C channels (e.g. RGB in images)

• Learnable Kernel u of size C×ℎ×𝑤
– The size ℎ×𝑤 is the receptive field

32

• Output size (𝐻 − ℎ + 1)×(𝑊 −𝑤 + 1) for each kernel
– Often called Activation Map or Output Feature Map

𝒙⊛ 𝒖 4,= = %
>67

?9:

𝒙>⊛𝒖> 4,= = %
>67

?9:

%
@67

A9:

%
B67

C9:

𝒙>,@;4,B;=𝒖>,@,B

Shared Weights: Economic and Equivariant

• Parameters are shared by each neuron producing an
output in the activation map

• Dramatically reduces number of weights needed to
produce an activation map
– Data: 256×256×3 RGB image
– Kernel: 3×3×3 → 27 weights
– Fully connected layer:

• 256×256×3 inputs à 256×256×3 outputs à 𝑂(10!") weights

33

Y. LeCun et. al. 1998

https://ieeexplore.ieee.org/document/726791

Shared Weights: Economic and Equivariant

• Parameters are shared by each neuron producing an
output in the activation map

• Dramatically reduces number of weights needed to
produce an activation map

• Convolutional layer does pattern matching at any
location à Equivariant to translation

34

Y. LeCun et. al. 1998

https://ieeexplore.ieee.org/document/726791

Pooling

• In each channel, find max or average value of
pixels in a pooling area of size ℎ×𝑤

35

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Pooling

• In each channel, find max or average value of
pixels in a pooling area of size ℎ×𝑤

36

Fleuret, Deep Learning Course

• Invariance to
permutation within
pooling area

• Invariance to local
perturbations

https://fleuret.org/dlc/

Convolutional Network

• A combination of convolution, pooling, ReLU,
and fully connected layers

37

Convolutional Networks 38

LeNet
(LeCun et al, 1998)

AlexNet
(Krizhevsky et al, 2012)

ImageNet Classification

Hierarchical Composition of Features 39

CNNs for Jet Tagging 40
32- -

Generic overview slide

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Even more non-linearity: Going Deep

Deep Convolutional Architectures for
Jet-Images at the Large Hadron Collider

Introduction
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new
and uncharted physics at unprecedented collision energies.

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million
channel detector captures snapshots of particle collisions occurring 40 million times per second.
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space.
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ)
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue.
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118],
enabling the connection between LHC physics event reconstruction and computer vision.. We
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often
done in Computer Vision, to account for non-discriminative difference in pixel intensities.

In our experiments, we build discriminants on top of Jet Images to distinguish between a
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully
Connected
ReLU Unit

ReLU Dropout ReLU Dropout
Local

Response
Normalization

W’→ WZ event

Convolutions
Convolved

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements
Our analysis shows that Deep Convolutional Networks significantly improve the classification of
new physics processes compared to state-of-the-art methods based on physics features,
enhancing the discovery potential of the LHC. More importantly, the improved performance
suggests that the deep convolutional network is capturing features and representations beyond
physics-motivated variables.

Concluding Remarks
We show that modern Deep Convolutional Architectures can significantly enhance the discovery
potential of the LHC for new particles and phenomena. We hope to both inspire future research
into Computer Vision-inspired techniques for particle discovery, and continue down this path
towards increased discovery potential for new physics.

Difference in average
image between signal

and background

Deep Convolutional Networks
Deep Learning — convolutional networks in particular — currently represent the state of the art in
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and
perform model selection. Below, we visualize a simple architecture used to great success.

We found that architectures with large filters captured the physics response with a higher level of
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based
structure that sheds light on phenomenological structures within jets.

Visualizing Learning
Below, we have the learned convolutional filters (left) and the difference in between the average
signal and background image after applying the learned convolutional filters (right). This novel
difference-visualization technique helps understand what the network learns.

2D
Convolutions
to Jet Images

Understanding Improvements
Since the selection of physics-driven variables is driven by physical understanding, we want to be
sure that the representations we learn are more than simple recombinations of basic physical
variables. We introduce a new method to test this — we derive sample weights to apply such that

meaning that physical variables have no discrimination power. Then, we apply our learned
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated
discriminants — mass (top)
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of
the physics-related variables leads to a likelihood
performance equivalent to a random guess, but
the Deep Convolutional Network retains some
discriminative power. This indicates that the deep
network learns beyond theory-driven variables —
we hypothesize these may have to do with
density, shape, spread, and other spatially driven
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory, cStanford University, Department of Statistics

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image
processing technique; also consider maxout

FC
+

logistic

Most activating images

Calorimeter towers as pixels
Energy depositions as intensity

Signal Efficiency

0.2 0.4 0.6 0.8

1/
(B

ac
kg

ro
un

d
Ef

fic
ie

nc
y)

0

50

100

150

 = 13 TeVsPythia 8,
/GeV < 300 GeV, 65 < mass/GeV < 95

T
250 < p

mass

21τ

RΔ
Fisher
Maxout
Convnet
Random

arXiv:1407.5675
arXiv:1511.05190

28- -
Generic overview slide

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Learning about learning

Deep Convolutional Architectures for
Jet-Images at the Large Hadron Collider

Introduction
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new
and uncharted physics at unprecedented collision energies.

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million
channel detector captures snapshots of particle collisions occurring 40 million times per second.
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space.
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ)
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue.
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118],
enabling the connection between LHC physics event reconstruction and computer vision.. We
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often
done in Computer Vision, to account for non-discriminative difference in pixel intensities.

In our experiments, we build discriminants on top of Jet Images to distinguish between a
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully
Connected
ReLU Unit

ReLU Dropout ReLU Dropout
Local

Response
Normalization

W’→ WZ event

Convolutions
Convolved

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements
Our analysis shows that Deep Convolutional Networks significantly improve the classification of
new physics processes compared to state-of-the-art methods based on physics features,
enhancing the discovery potential of the LHC. More importantly, the improved performance
suggests that the deep convolutional network is capturing features and representations beyond
physics-motivated variables.

Concluding Remarks
We show that modern Deep Convolutional Architectures can significantly enhance the discovery
potential of the LHC for new particles and phenomena. We hope to both inspire future research
into Computer Vision-inspired techniques for particle discovery, and continue down this path
towards increased discovery potential for new physics.

Difference in average
image between signal

and background

Deep Convolutional Networks
Deep Learning — convolutional networks in particular — currently represent the state of the art in
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and
perform model selection. Below, we visualize a simple architecture used to great success.

We found that architectures with large filters captured the physics response with a higher level of
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based
structure that sheds light on phenomenological structures within jets.

Visualizing Learning
Below, we have the learned convolutional filters (left) and the difference in between the average
signal and background image after applying the learned convolutional filters (right). This novel
difference-visualization technique helps understand what the network learns.

2D
Convolutions
to Jet Images

Understanding Improvements
Since the selection of physics-driven variables is driven by physical understanding, we want to be
sure that the representations we learn are more than simple recombinations of basic physical
variables. We introduce a new method to test this — we derive sample weights to apply such that

meaning that physical variables have no discrimination power. Then, we apply our learned
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated
discriminants — mass (top)
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of
the physics-related variables leads to a likelihood
performance equivalent to a random guess, but
the Deep Convolutional Network retains some
discriminative power. This indicates that the deep
network learns beyond theory-driven variables —
we hypothesize these may have to do with
density, shape, spread, and other spatially driven
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory, cStanford University, Department of Statistics

Advantage of CNN is that we can visualize the filters

Filters convolved
with images

https://arxiv.org/abs/1407.5675
https://arxiv.org/abs/1511.05190

Recurrent Neural Networks 41

Sequential Data

• Many types of data are not fixed in size

• Many types of data have a temporal or
sequence-like structure
– Text
– Video
– Speech
– DNA
– …

• MLP expects fixed size data

• How to deal with sequences?

42

Sequential Data

• Given a set 𝒳, let 𝑆 𝒳 be the set of sequences,
where each element of the sequence 𝑥$ ∈ 𝒳
– 𝒳 could reals ℝ- , integers ℤ- , etc.
– Sample sequence 𝑥 = {𝑥", 𝑥., … , 𝑥/}

• Tasks related to sequences:
– Classification 𝑓: 𝑆 𝒳 → {𝒑 |∑01"! 𝑝2 = 1}
– Generation 𝑓: ℝ3 → 𝑆 𝒳
– Seq.-to-seq. translation 𝑓: 𝑆 𝒳 → 𝑆 𝒴

43

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent States

• Input sequence 𝑥 ∈ 𝑆(ℝ!) of variable length 𝑇(𝑥)

• Standard approach: use recurrent model that
maintains a recurrent state 𝒉" ∈ ℝ# updated at each
time step 𝑡. For 𝑡 = 1,… , 𝑇 𝑥 :

𝒉"$% = 𝜙(𝒙", 𝒉"; 𝜃)

– Simplest model:

𝜙 𝒙! , 𝒉!;𝑊, 𝑈 = 𝜎(𝑊𝒙! + 𝑈𝒉!)

• Predictions can be made at any time 𝑡 from the
recurrent state

𝒚" = 𝜓(𝒉"; 𝜃)

44

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent Neural Networks 45

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent Neural Networks 46

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent Neural Networks 47

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent Neural Networks 48

The movie was great

[0.98] à Positive Sentiment

Sentiment
Analysis

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent Neural Networks 49

Credit: F. Fleuret

Prediction per sequence element

Although the number of steps 𝑇(𝑥) depends on 𝑥, this is a standard
computational graph and automatic differentiation can deal with it as
usual. This is known as “backpropagation through time” (Werbos, 1988)

https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-12-1-RNN-basics.pdf

Stacked RNN 50

𝜙(")ℎ$
(") ℎ%

(") … 𝜙(") ℎ&'%
(") 𝜙(") ℎ&

(")

𝒙#:%

𝒘

𝑹𝑵𝑵 𝒉#:% 𝑹𝑵𝑵 𝒉#:'
(𝟐) … 𝑹𝑵𝑵 𝒉#:'

(𝑵)

Two Stacked LSTM Layers

1st RNN Layer

2nd RNN Layer

Zoom in

Bi-Directional RNN 51

ℎ$
(%) ℎ%

(%)

𝒘

𝜙(%)

𝑥%

ℎ$
(%) ℎ%

(")𝜙(")

𝜙(%) …

𝜙(") …

𝜙(%) ℎ&'%
(%) 𝜙(%) ℎ&

(%)

𝜙(") ℎ&'%
(") 𝜙(") ℎ&

(")

𝑥" 𝑥&'% 𝑥&

Backward in time RNN Layer

Forward in time RNN Layer

• Gating:
– network can grow very deep,

in time à vanishing gradients.
– Critical component: add pass-through (additive paths)

so recurrent state does not go repeatedly through
squashing non-linearity.

Gating 52

Credit: Gilles Louppe

https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf

• Gating:
– network can grow very deep,

in time à vanishing gradients.
– Critical component: add pass-through (additive paths)

so recurrent state does not go repeatedly through
squashing non-linearity.

• LSTM:
– Add internal state separate

from output state
– Add input, output, and

forget gating

Long Short Term Memory (LSTM) 53

x t

h t

ct⊙ +

σ σ

ft c̄t

h t−1

ct−1

σ tanh

it

⊙

ot ⊙

tanh

f t = σ W [h ,x] + b (
f

T
t−1 t f)

29 / 69

Credit: Gilles Louppe

https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf

Comparison on Toy Problem 54

Learn to recognize palindrome
Sequence size between 1 to 10

Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture6.md

Examples 55

Y. Wu et al, 2016

https://arxiv.org/abs/1609.08144

RNNs for b-tagging 56ATL-PHYS-PUB-2017-003

Factor of 2-3 Improvement

https://cds.cern.ch/record/2255226

Graph Data 57

Graph Data

• Sequential data has single (directed) connections
from data at current time to data at next time

• What about data with more complex dependencies

58

x1 x2 x3 xT…

Image Credit: I. Henrion Image credit: N. Wang et al., 2018

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf
https://arxiv.org/abs/1804.01654

Graphs

• Adjacency matrix: 𝐴26 = 𝛿(𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖 𝑎𝑛𝑑 𝑗)

• Each node can have features

• Each edge can have features, e.g. distance between nodes

59

Vertex / node

Edge

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing 60

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing 61

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing 62

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing 63

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Examples 64

Sanchez-Gonzalez et al. 2020

https://arxiv.org/abs/2002.09405

GNN for Jet Tagging 65

Phys. Rev. D 101, 056019 (2020)

Top Jets vs QCD dijets

EdgeConv Block

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019

Comparing Methods for Jet Tagging 66

SciPost Phys. 7, 014 (2019)

https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.21468%2FSciPostPhys.7.1.014&v=63980b23

Summary

• Neural Networks allow us to combine non-linear
basis selection with feature learning
– Care needed to train them and ensure they don’t overfit

• Deep neural networks allow us to learn complex
function by hierarchically structuring the feature
learning

• We can use our inductive bias (knowledge) to define
models that are well adapted to our problem

• Many neural networks structures are available for
training models on a wide array of data types.

67

68

Automatic Differentiation 69

Chain Rule – Symbolic Differentiation Painful!

• Derivative of sigmoid:

• Chain rule to compute gradient w.r.t. w

• Chain rule to compute gradient w.r.t. uj

70

L(w,U) = �
X

i

yi ln(�(h(xi))) + (1� yi) ln(1� �(h(xi)))

@�(x)

@x
= �(x)(1� �(x))

@L

@uj
=

@L

@h

@h

@�

@�

@uj
=

=
X

i

yi(1� �(h(xi)))wj�(ujxi)(1� �(ujxi))xi

+ (1� yi)�(h(xi))wj�(ujxi)(1� �(ujxi))xi

@L

@w
=

@L

@h

@h

@w
=

X

i

yi(1� �(h(xi)))�(Ux) + (1� yi)�(h(x))�(Uxi)

Automatic Differentiation 71

Problem: Compute gradients of 𝑧
with respect to inputs 𝑥", 𝑥#

𝑧 = sin 𝑥" + 𝑥"𝑥#

Automatic Differentiation 72

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%

𝑤! = 𝑥!
𝑤" = 𝑥"
𝑤$ = 𝑤!𝑤"
𝑤# = sin 𝑤!
𝑤% = 𝑤$ + 𝑤#
𝑧 = 𝑤%

Problem: Compute gradients of 𝑧
with respect to inputs 𝑥", 𝑥#

𝑧 = sin 𝑥" + 𝑥"𝑥#

Organize as a computational Graph

Automatic Differentiation 73

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%

𝑤! = 𝑥!
𝑤" = 𝑥"
𝑤$ = 𝑤!𝑤"
𝑤# = sin 𝑤!
𝑤% = 𝑤$ + 𝑤#
𝑧 = 𝑤%

𝑑𝑤!
𝑑𝑥!

= 1

𝑑𝑤"
𝑑𝑥"

= 1

𝑑𝑤#
𝑑𝑤!

= 𝑤"
𝑑𝑤#
𝑑𝑤"

= 𝑤!
𝑑𝑤$
𝑑𝑤!

= cos(𝑤!)

𝑑𝑤%
𝑑𝑤#

= 1
𝑑𝑤%
𝑑𝑤$

= 1

Problem: Compute gradients of 𝑧
with respect to inputs 𝑥", 𝑥#

We know the gradients of simple
functions: sin 𝑥 , 𝑥 ∗ 𝑦, 𝑥 + 𝑦 …

Chain rule:
𝑑𝑧
𝑑𝑤!

= ;
#∈#%&'()*

𝑑𝑧
𝑑𝑤#

𝑑𝑤#
𝑑𝑤+

Automatic Differentiation 74

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%

𝑤! = 𝑥!
𝑤" = 𝑥"
𝑤$ = 𝑤!𝑤"
𝑤# = sin 𝑤!
𝑤% = 𝑤$ + 𝑤#
𝑧 = 𝑤%

Problem: Compute gradients of 𝑧
with respect to inputs 𝑥", 𝑥#

NOT going to find analytic derivative

WILL find a way to compute value of
gradient for a given input point

Forward Mode Automatic Differentiation 75

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

For each input, from input to output
sequentially, evaluate graph and gradients
and store values

𝑑𝑤!
𝑑𝑥!

= 1
𝑑𝑤"
𝑑𝑤!

= 𝑤# = 2

𝑑𝑤$
𝑑𝑤"

= 1 𝑑𝑧
𝑑𝑤$

= 1

Forward Mode Automatic Differentiation 76

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

For each input, from input to output
sequentially, evaluate graph and gradients
and store values

Apply chain rule with multiplication
𝑑𝑧
𝑑𝑥D

=
𝑑𝑤D
𝑑𝑥D

𝑑𝑤E
𝑑𝑤D

𝑑𝑤F
𝑑𝑤E

𝑑𝑧
𝑑𝑤F

= 1 ∗ 2 ∗ 1 ∗ 1 = 2

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑑𝑤!
𝑑𝑥!

= 1
𝑑𝑤"
𝑑𝑤!

= 𝑤# = 2

𝑑𝑤$
𝑑𝑤"

= 1 𝑑𝑧
𝑑𝑤$

= 1

Forward Mode Automatic Differentiation 77

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Forward Mode allows us to compute the gradient
of one input with respect to all the output

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑑𝑤!
𝑑𝑥!

= 1
𝑑𝑤"
𝑑𝑤!

= 𝑤# = 2

𝑑𝑤$
𝑑𝑤"

= 1 𝑑𝑧
𝑑𝑤$

= 1

Jacobian 3𝒛
3𝒙
=

3>!
3?!

… 3>"
3?!

⋮ ⋱ ⋮
3>!
3?#

… 3>"
3?#

If we have 1 output (Loss) and many inputs à SLOW!

Reverse Mode Automatic Differentiation 78

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Evaluate graph and store values

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

Reverse Mode Automatic Differentiation 79

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Compute derivatives with chain rule
from end to beginning:

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤% 𝑑𝑧

𝑑𝑤%
= 1

= 1

Reverse Mode Automatic Differentiation 80

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Compute derivatives with chain rule
from end to beginning:

𝑑𝑧
𝑑𝑤%

= 1

𝑑𝑧
𝑑𝑤$

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤$

= 1×1 = 1

= 1= 1

Reverse Mode Automatic Differentiation 81

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Compute derivatives with chain rule
from end to beginning:

𝑑𝑧
𝑑𝑤%

= 1

𝑑𝑧
𝑑𝑤$

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤$

= 1×1 = 1

𝑑𝑧
𝑑𝑤#

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤#

= 1×1 = 1

= 1= 1

= 1

Reverse Mode Automatic Differentiation 82

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Compute derivatives with chain rule
from end to beginning:

𝑑𝑧
𝑑𝑤%

= 1

𝑑𝑧
𝑑𝑤$

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤$

= 1×1 = 1

𝑑𝑧
𝑑𝑤#

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤#

= 1×1 = 1

= 1= 1

= 1

𝑑𝑧
𝑑𝑤"

=
𝑑𝑧
𝑑𝑤$

𝑑𝑤$
𝑑𝑤"

= 1×𝑤! = 𝑤! = 2

= 𝑤!= 2

Reverse Mode Automatic Differentiation 83

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

𝑑𝑧
𝑑𝑤%

= 1

𝑑𝑧
𝑑𝑤$

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤$

= 1×1 = 1

𝑑𝑧
𝑑𝑤#

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤#

= 1×1 = 1

𝑑𝑧
𝑑𝑤"

=
𝑑𝑧
𝑑𝑤$

𝑑𝑤$
𝑑𝑤"

= 1×𝑤! = 𝑤! = 2

𝑑𝑧
𝑑𝑤!

=
𝑑𝑧
𝑑𝑤#

𝑑𝑤#
𝑑𝑤!

+
𝑑𝑧
𝑑𝑤$

𝑑𝑤$
𝑑𝑤!

= cos 𝑤! + 𝑤" = cos 2 + 3
= 2.58

= 𝑤!= 2

= 𝑤
"= 3

= cos𝑤! = −0.42

= 1= 1

= 1

Compute derivatives with chain rule
from end to beginning:

Reverse Mode Automatic Differentiation 84

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

For each output, can compute the
gradient w.r.t. all inputs in one pass!

= 𝑤!= 2

= 𝑤
"= 3

= cos𝑤! = −0.42

= 1= 1

= 1

Jacobian 3𝒛
3𝒙
=

3>!
3?!

… 3>"
3?!

⋮ ⋱ ⋮
3>!
3?#

… 3>"
3?#

Neural Network Zoo – “Optimization” Perspective 85

Neural Network Zoo – “Optimization” Perspective 86

• A single layer network may need a width exponential in D
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Neural Network Zoo – “Optimization” Perspective 87

Belkin et. al. 2018

• A single layer network may need a width exponential in D
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Neural Network Zoo – “Optimization” Perspective 88

• A single layer network may need a width exponential in D
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Neural Network Zoo – “Optimization” Perspective 89

• A single layer network may need a width exponential in D
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

• Major part of deep learning is trying to choose the
right function…

… instead of trying to improve training with
regularization and new optimizers

– Need to make gradient descent work, even at the cost of a
substantially engineering the model

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

CNN Details 90

Stride – Step Size When Moving Kernel Across Input 91

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Padding – Size of Zero Frame Around Input 92

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

RNN 93

Examples 94

Self-driving Mario Kart with RNN: YouTube video

https://youtu.be/Ipi40cb_RsI

Examples 95

Shen et al., 2017

https://arxiv.org/abs/1712.05884

GNN 96

Neural Message Passing 97

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Examples 98

Schutt et al. 2017

https://www.nature.com/articles/ncomms13890

Deep Sets

99

What if our data has no time structure?

• Data may be variable in length but have no
temporal structure à Data are sets of values

• One option: If we know about the data domain,
could try to impose an ordering, then use RNN

• Better option: use system that can operate on
variable length sets in permutation invariant way

–Why permutation invariant à so order doesn’t matter

100

Deep Sets 101

x1

w

𝜙

h1

Deep Sets 102

x1

w

𝜙

h1

x2

𝜙

h2

Deep Sets 103

x1

w

𝜙

h1

x2

𝜙

h2 …

xT

𝜙

hT

Deep Sets 104

x1

w

𝜙

h1

x2

𝜙

h2 …

xT

𝜙

hT

Σ

Oℎ!:0
Permutation invariant
operation: Sum, Max, …

Deep Sets 105

x1

w

𝜙

h1

x2

𝜙

h2 …

xT

𝜙

hT

Σ

Oℎ!:0

F ywF

Examples 106

M. Zaheer et. al 2017

Outlier detection

Medical Imaging

M. Ilse et al., 2018

With more complex architecture

https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1802.04712

