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– Introduction to Machine Learning fundamentals
– Linear Models
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– Neural Networks
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– Convolutional, Recurrent, and Graph Neural Networks

• Lecture 3
– Unsupervised Learning
– Autoencoders
– Generative Adversarial Networks and Normalizing Flows
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Adding non-linearity to Logistic Regression

• What if  we want a non-linear decision boundary?
– Choose basis functions, e.g:     f(x) ~ {x2, sin(x), log(x), …}
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Adding non-linearity

• What if  we want a non-linear decision boundary?
– Choose basis functions, e.g:     f(x) ~ {x2, sin(x), log(x), …}

• What if  we don’t know what basis functions we want?

• Learn the basis functions directly from data

f(x; u)      Rm → Rd

– Where u is a set of  parameters for the transformation
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Adding non-linearity

• What if  we want a non-linear decision boundary?
– Choose basis functions, e.g:     f(x) ~ {x2, sin(x), log(x), …}

• What if  we don’t know what basis functions we want?

• Learn the basis functions directly from data

f(x; u)      Rm → Rd

– Where u is a set of  parameters for the transformation

– Combines basis selection and learning
– Several different approaches, focus here on neural networks
– Complicates the optimization
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Neural Networks

• Define the basis functions j = {1…d}

fj(x; u) = s(uj
Tx)
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Neural Networks

• Define the basis functions j = {1…d}

fj(x; u) = s(uj
Tx)

• Put all uj Î R1xm vectors into matrix U

f(x; U) = s(Ux) =                   Î Rd

– s is a point-wise non-linearity acting on each vector element 
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Neural Networks

• Define the basis functions j = {1…d}

fj(x; u) = s(uj
Tx)

• Put all uj Î R1xm vectors into matrix U

f(x; U) = s(Ux) =                   Î Rd

– s is a point-wise non-linearity acting on each vector element 

• Full model becomes
h(x; w, U) = wTf(x; U)
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Feed Forward Neural Network 10

�(x) = �(Ux)

h(x) = wT�(x)

U

Hidden layer
Composed of neurons

𝜎(…) often called the 
activation function



Multi-layer Neural Network

• Multilayer NN
– Each layer adapts basis functions based on previous layer
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Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

• Regression: Square error loss function

• Minimize loss with respect to weights w, U
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h(x) = wT�(Ux)

L(w,U) =
1

2

X

i

(yi � h(xi))
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pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
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Minimizing loss with gradient descent:

• Parameter update:

𝑤 ← 𝑤 − 𝜂
𝜕𝐿 𝑤, 𝑈
𝜕𝑤

𝑈 ← 𝑈 − 𝜂
𝜕𝐿(𝑤, 𝑈)
𝜕𝑈

• How to compute gradients?

– In principle, we could compute them analytically, but 
the resulting expressions quickly get out of  hand, are 
hard to simplify, and can drain memory
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Automatic Differentiation 14

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%

𝑑𝑤!
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= 1
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𝑑𝑥"

= 1
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𝑑𝑤"
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𝑑𝑤$
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= cos(𝑤!)

𝑑𝑤%
𝑑𝑤#

= 1
𝑑𝑤%
𝑑𝑤$

= 1

Organize function as computational 
graph of  elementary operations

Evaluate blocks and their derivatives, 
and apply chain rule: 

𝑑𝑧
𝑑𝑤!

= -
&∈&()*+,-

𝑑𝑧
𝑑𝑤&

𝑑𝑤&
𝑑𝑤.

𝑧 = sin 𝑥! + 𝑥!𝑥"

Forward Mode Automatic Differentiation

Backward Mode Automatic Differentiation

See Backup for more details

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%



Backpropagation

• Loss function composed of  layers of  nonlinearity

• Forward step (f-prop)
– Compute and save intermediate computations

• Backward step (b-prop)

• Compute parameter gradients
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Training

• Repeat gradient update of  weights to reduce loss 
– Each iteration through dataset is called an epoch

• Use validation set to examine for overtraining, and 
determine when to stop training 
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Vanishing Gradients

• Major challenge in DL: Vanishing Gradients

• Small gradients slow down / block, stochastic 
gradient descent à Limits ability to learn!
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Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Gradients for layers far from the output vanish to zero.Slide credit: G. Louppe

Sigmoid Gradient

https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md


Activation Functions

• Vanishing gradient problem
– Derivative of  sigmoid:

– Nearly 0 when x is far from 0!
– Can make gradient descent hard!
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∂σ (x)
∂x

=σ (x)(1−σ (x))

• Rectified Linear Unit (ReLU)
– ReLU(x) = max{0, x}
– Derivative is constant!

– ReLU gradient doesn’t vanish

∂ReLU(x)
∂x

= 1
0

when x > 0
otherwise

"
#
$
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Neural Network Decision Boundaries 19

x1

x2

4-class classification
2-hidden layer NN
ReLU activations
L2 norm regularization

2-class classification
1-hidden layer NN
L2 norm regularization

One neuron Two neuron

Three neurons Four neurons

Five neurons Twenty neurons

Fifty neurons

Image source Image source

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r


Universal approximation theorem

• Feed-forward neural network with a single hidden 
layer containing a finite number of  non-linear 
neurons (ReLU, Sigmoid, and others) can 
approximate continuous functions arbitrarily well 
on a compact space of  ℝ!

20

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Universal approximation theorem

• Feed-forward neural network with a single hidden 
layer containing a finite number of  non-linear 
neurons (ReLU, Sigmoid, and others) can 
approximate continuous functions arbitrarily well 
on a compact space of  ℝ!
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• NOTE!
– A better approximation requires a larger hidden layer and this 

theorem says nothing about the relation between the two.

– We can make training error as low as we want by using a larger 
hidden layer. Result states nothing about test error

– Doesn’t say how to find the parameters for this approximation

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Deep Neural Networks

• As data complexity grows, need exponentially large number of  neurons in 
a single-hidden-layer network to capture all structure in data

• Deep neural networks factorize the learning of  structure in data across 
many layers

• Difficult to train, only recently possible with large datasets, fast computing 
(GPU / TPU) and new training procedures / network structures 
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Neural Network Zoo

• Structure of  the networks, and 
the node connectivity can be 
adapted for problem at hand

• Moving inductive bias from 
feature engineering to model 
design 

– Inductive bias:
Knowledge about the problem 

– Feature engineering:
Hand crafted variables 

– Model design:
The data representation and the 
structure of  the machine 
learning model / network 
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Image credit: neural-network-zoo

http://www.asimovinstitute.org/neural-network-zoo/


Convolutional Neural Networks 24



Convolutional Neural Networks

• When the structure of  data includes “invariance 
to translation”, a representation meaningful at a 
certain location can / should be used everywhere
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Fleuret, Deep Learning Course

• Covolutional layers build on this idea, that the 
same “local” transformation is applied everywhere 
and preserves the signal structure

https://fleuret.org/dlc/


1D Convolutional Layer Example 26

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


1D Convolutional Layers

• Data:                                                  𝑥 ∈ ℝ"

• Convolutional kernel of  width k:      𝑢 ∈ ℝ#

• Convolution 𝑥 ⊛ 𝑢 is vector of  size M-k+1

27

𝑥 ⊛ u 4 = %
567

89:

𝑥4;5𝑢5

• Scan across data and multiply by kernel elements 



Convolutional Filters 28

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


2D Convolution Over Multiple Channels 29

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


2D Convolution Over Multiple Channels 30

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


2D Convolution Over Multiple Channels 31

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


2D Convolutional Layer

• Input data (tensor) x of  size C×𝐻×𝑊
– C channels (e.g. RGB in images)

• Learnable Kernel u of  size C×ℎ×𝑤
– The size ℎ×𝑤 is the receptive field
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• Output size (𝐻 − ℎ + 1)×(𝑊 −𝑤 + 1) for each kernel 
– Often called Activation Map or Output Feature Map
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Shared Weights: Economic and Equivariant

• Parameters are shared by each neuron producing an 
output in the activation map

• Dramatically reduces number of  weights needed to 
produce an activation map
– Data: 256×256×3 RGB image
– Kernel: 3×3×3 → 27 weights
– Fully connected layer:

• 256×256×3 inputs à 256×256×3 outputs à 𝑂(10!") weights
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Y. LeCun et. al. 1998

https://ieeexplore.ieee.org/document/726791


Shared Weights: Economic and Equivariant

• Parameters are shared by each neuron producing an 
output in the activation map

• Dramatically reduces number of  weights needed to 
produce an activation map

• Convolutional layer does pattern matching at any 
location à Equivariant to translation
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Y. LeCun et. al. 1998

https://ieeexplore.ieee.org/document/726791


Pooling

• In each channel, find max or average value of  
pixels in a pooling area of  size ℎ×𝑤

35

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Pooling

• In each channel, find max or average value of  
pixels in a pooling area of  size ℎ×𝑤
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Fleuret, Deep Learning Course

• Invariance to 
permutation within 
pooling area

• Invariance to local 
perturbations

https://fleuret.org/dlc/


Convolutional Network

• A combination of  convolution, pooling, ReLU, 
and fully connected layers

37



Convolutional Networks 38

LeNet
(LeCun et al, 1998)

AlexNet
(Krizhevsky et al, 2012)

ImageNet Classification



Hierarchical Composition of  Features 39



CNNs for Jet Tagging 40
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 
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Apply deep learning techniques on jet images! [3]
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Learning about learning

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image
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Convolutions
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Advantage of CNN is that we can visualize the filters

Filters convolved 
with images

https://arxiv.org/abs/1407.5675
https://arxiv.org/abs/1511.05190


Recurrent Neural Networks 41



Sequential Data

• Many types of  data are not fixed in size

• Many types of  data have a temporal or 
sequence-like structure
– Text
– Video
– Speech
– DNA
– …

• MLP expects fixed size data

• How to deal with sequences?

42



Sequential Data

• Given a set 𝒳, let 𝑆 𝒳 be the set of  sequences, 
where each element of  the sequence 𝑥$ ∈ 𝒳
– 𝒳 could reals ℝ- , integers ℤ- , etc.
– Sample sequence 𝑥 = {𝑥", 𝑥., … , 𝑥/}

• Tasks related to sequences:
– Classification                    𝑓: 𝑆 𝒳 → {𝒑 |∑01"! 𝑝2 = 1}
– Generation                       𝑓: ℝ3 → 𝑆 𝒳
– Seq.-to-seq. translation    𝑓: 𝑆 𝒳 → 𝑆 𝒴

43

Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent States

• Input sequence 𝑥 ∈ 𝑆(ℝ!) of  variable length 𝑇(𝑥)

• Standard approach: use recurrent model that 
maintains a recurrent state 𝒉" ∈ ℝ# updated at each 
time step 𝑡.  For 𝑡 = 1,… , 𝑇 𝑥 :

𝒉"$% = 𝜙(𝒙", 𝒉"; 𝜃)

– Simplest model: 

𝜙 𝒙! , 𝒉!;𝑊, 𝑈 = 𝜎(𝑊𝒙! + 𝑈𝒉!)

• Predictions can be made at any time 𝑡 from the 
recurrent state

𝒚" = 𝜓(𝒉"; 𝜃)

44

Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent Neural Networks 45

Credit: F. Fleuret

https://fleuret.org/dlc/
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Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent Neural Networks 47

Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent Neural Networks 48

The movie was great

[0.98] à Positive Sentiment

Sentiment
Analysis

Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent Neural Networks 49

Credit: F. Fleuret

Prediction per sequence element

Although the number of  steps 𝑇(𝑥) depends on 𝑥, this is a standard 
computational graph and automatic differentiation can deal with it as 
usual. This is known as “backpropagation through time” (Werbos, 1988)

https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-12-1-RNN-basics.pdf


Stacked RNN 50
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Zoom in
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ℎ$
(%) ℎ%

(%)

𝒘

𝜙(%)

𝑥%

ℎ$
(%) ℎ%

(")𝜙(")

𝜙(%) …

𝜙(") …

𝜙(%) ℎ&'%
(%) 𝜙(%) ℎ&

(%)

𝜙(") ℎ&'%
(") 𝜙(") ℎ&

(")

𝑥" 𝑥&'% 𝑥&

Backward in time RNN Layer

Forward in time RNN Layer



• Gating:
– network can grow very deep, 

in time à vanishing gradients. 
– Critical component: add pass-through (additive paths) 

so recurrent state does not go repeatedly through 
squashing non-linearity. 

Gating 52

Credit: Gilles Louppe

https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf


• Gating:
– network can grow very deep, 

in time à vanishing gradients. 
– Critical component: add pass-through (additive paths) 

so recurrent state does not go repeatedly through 
squashing non-linearity. 

• LSTM: 
– Add internal state separate 

from output state
– Add input, output, and 

forget gating

Long Short Term Memory (LSTM) 53
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Credit: Gilles Louppe

https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf


Comparison on Toy Problem 54

Learn to recognize palindrome
Sequence size between 1 to 10

Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture6.md


Examples 55

Y. Wu et al, 2016

https://arxiv.org/abs/1609.08144


RNNs for b-tagging 56ATL-PHYS-PUB-2017-003

Factor of 2-3 Improvement

https://cds.cern.ch/record/2255226


Graph Data 57



Graph Data

• Sequential data has single (directed) connections 
from data at current time to data at next time

• What about data with more complex dependencies  

58

x1 x2 x3 xT…

Image Credit: I. Henrion Image credit: N. Wang et al., 2018

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf
https://arxiv.org/abs/1804.01654


Graphs

• Adjacency matrix: 𝐴26 = 𝛿(𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖 𝑎𝑛𝑑 𝑗)

• Each node can have features

• Each edge can have features, e.g. distance between nodes

59

Vertex / node

Edge

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 60

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf
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Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 62

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 63

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Examples 64

Sanchez-Gonzalez et al. 2020

https://arxiv.org/abs/2002.09405


GNN for Jet Tagging 65

Phys. Rev. D 101, 056019 (2020)

Top Jets vs QCD dijets

EdgeConv Block

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019


Comparing Methods for Jet Tagging 66

SciPost Phys. 7, 014 (2019)

https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.21468%2FSciPostPhys.7.1.014&v=63980b23


Summary

• Neural Networks allow us to combine non-linear 
basis selection with feature learning
– Care needed to train them and ensure they don’t overfit

• Deep neural networks allow us to learn complex 
function by hierarchically structuring the feature 
learning

• We can use our inductive bias (knowledge) to define 
models that are well adapted to our problem

• Many neural networks structures are available for 
training models on a wide array of  data types. 

67



68
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Chain Rule – Symbolic Differentiation Painful!

• Derivative of  sigmoid:

• Chain rule to compute gradient w.r.t. w

• Chain rule to compute gradient w.r.t. uj

70

L(w,U) = �
X

i

yi ln(�(h(xi))) + (1� yi) ln(1� �(h(xi)))

@�(x)

@x
= �(x)(1� �(x))

@L

@uj
=

@L

@h

@h

@�

@�

@uj
=

=
X

i

yi(1� �(h(xi)))wj�(ujxi)(1� �(ujxi))xi

+ (1� yi)�(h(xi))wj�(ujxi)(1� �(ujxi))xi

@L

@w
=

@L

@h

@h

@w
=

X

i

yi(1� �(h(xi)))�(Ux) + (1� yi)�(h(x))�(Uxi)
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Problem: Compute gradients of  𝑧
with respect to inputs 𝑥", 𝑥#

𝑧 = sin 𝑥" + 𝑥"𝑥#



Automatic Differentiation 72

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%

𝑤! = 𝑥!
𝑤" = 𝑥"
𝑤$ = 𝑤!𝑤"
𝑤# = sin 𝑤!
𝑤% = 𝑤$ + 𝑤#
𝑧 = 𝑤%

Problem: Compute gradients of  𝑧
with respect to inputs 𝑥", 𝑥#

𝑧 = sin 𝑥" + 𝑥"𝑥#

Organize as a computational Graph
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𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%

𝑤! = 𝑥!
𝑤" = 𝑥"
𝑤$ = 𝑤!𝑤"
𝑤# = sin 𝑤!
𝑤% = 𝑤$ + 𝑤#
𝑧 = 𝑤%

𝑑𝑤!
𝑑𝑥!

= 1

𝑑𝑤"
𝑑𝑥"

= 1

𝑑𝑤#
𝑑𝑤!

= 𝑤"
𝑑𝑤#
𝑑𝑤"

= 𝑤!
𝑑𝑤$
𝑑𝑤!

= cos(𝑤!)

𝑑𝑤%
𝑑𝑤#

= 1
𝑑𝑤%
𝑑𝑤$

= 1

Problem: Compute gradients of  𝑧
with respect to inputs 𝑥", 𝑥#

We know the gradients of  simple
functions: sin 𝑥 , 𝑥 ∗ 𝑦, 𝑥 + 𝑦 …

Chain rule: 
𝑑𝑧
𝑑𝑤!

= ;
#∈#%&'()*

𝑑𝑧
𝑑𝑤#

𝑑𝑤#
𝑑𝑤+



Automatic Differentiation 74

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%

𝑤! = 𝑥!
𝑤" = 𝑥"
𝑤$ = 𝑤!𝑤"
𝑤# = sin 𝑤!
𝑤% = 𝑤$ + 𝑤#
𝑧 = 𝑤%

Problem: Compute gradients of  𝑧
with respect to inputs 𝑥", 𝑥#

NOT going to find analytic derivative

WILL find a way to compute value of  
gradient for a given input point
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𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

For each input, from input to output 
sequentially, evaluate graph and  gradients 
and store values

𝑑𝑤!
𝑑𝑥!

= 1
𝑑𝑤"
𝑑𝑤!

= 𝑤# = 2

𝑑𝑤$
𝑑𝑤"

= 1 𝑑𝑧
𝑑𝑤$

= 1
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𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

For each input, from input to output 
sequentially, evaluate graph and  gradients 
and store values

Apply chain rule with multiplication
𝑑𝑧
𝑑𝑥D

=
𝑑𝑤D
𝑑𝑥D

𝑑𝑤E
𝑑𝑤D

𝑑𝑤F
𝑑𝑤E

𝑑𝑧
𝑑𝑤F

= 1 ∗ 2 ∗ 1 ∗ 1 = 2

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑑𝑤!
𝑑𝑥!

= 1
𝑑𝑤"
𝑑𝑤!

= 𝑤# = 2

𝑑𝑤$
𝑑𝑤"

= 1 𝑑𝑧
𝑑𝑤$

= 1
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𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Forward Mode allows us to compute the gradient
of  one input with respect to all the output

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑑𝑤!
𝑑𝑥!

= 1
𝑑𝑤"
𝑑𝑤!

= 𝑤# = 2

𝑑𝑤$
𝑑𝑤"

= 1 𝑑𝑧
𝑑𝑤$

= 1

Jacobian   3𝒛
3𝒙
=

3>!
3?!

… 3>"
3?!

⋮ ⋱ ⋮
3>!
3?#

… 3>"
3?#

If  we have 1 output (Loss) and many inputs à SLOW!
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𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Evaluate graph and store values

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%
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𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Compute derivatives with chain rule
from end to beginning:

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤% 𝑑𝑧

𝑑𝑤%
= 1

= 1
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𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Compute derivatives with chain rule
from end to beginning:

𝑑𝑧
𝑑𝑤%

= 1

𝑑𝑧
𝑑𝑤$

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤$

= 1×1 = 1

= 1= 1
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𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Compute derivatives with chain rule
from end to beginning:

𝑑𝑧
𝑑𝑤%

= 1

𝑑𝑧
𝑑𝑤$

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤$

= 1×1 = 1

𝑑𝑧
𝑑𝑤#

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤#

= 1×1 = 1

= 1= 1

= 1



Reverse Mode Automatic Differentiation 82

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Compute derivatives with chain rule
from end to beginning:

𝑑𝑧
𝑑𝑤%

= 1

𝑑𝑧
𝑑𝑤$

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤$

= 1×1 = 1

𝑑𝑧
𝑑𝑤#

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤#

= 1×1 = 1

= 1= 1

= 1

𝑑𝑧
𝑑𝑤"

=
𝑑𝑧
𝑑𝑤$

𝑑𝑤$
𝑑𝑤"

= 1×𝑤! = 𝑤! = 2

= 𝑤!= 2
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𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

𝑑𝑧
𝑑𝑤%

= 1

𝑑𝑧
𝑑𝑤$

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤$

= 1×1 = 1

𝑑𝑧
𝑑𝑤#

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤#

= 1×1 = 1

𝑑𝑧
𝑑𝑤"

=
𝑑𝑧
𝑑𝑤$

𝑑𝑤$
𝑑𝑤"

= 1×𝑤! = 𝑤! = 2

𝑑𝑧
𝑑𝑤!

=
𝑑𝑧
𝑑𝑤#

𝑑𝑤#
𝑑𝑤!

+
𝑑𝑧
𝑑𝑤$

𝑑𝑤$
𝑑𝑤!

= cos 𝑤! + 𝑤" = cos 2 + 3
= 2.58

= 𝑤!= 2

= 𝑤
"= 3

= cos𝑤! = −0.42

= 1= 1

= 1

Compute derivatives with chain rule
from end to beginning:
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𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

For each output, can compute the
gradient w.r.t. all inputs in one pass!

= 𝑤!= 2

= 𝑤
"= 3

= cos𝑤! = −0.42

= 1= 1

= 1

Jacobian   3𝒛
3𝒙
=

3>!
3?!

… 3>"
3?!

⋮ ⋱ ⋮
3>!
3?#

… 3>"
3?#
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• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of  Telgarsky (2015, 2016)

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/
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Belkin et. al. 2018

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of  Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff  prediction

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/


Neural Network Zoo – “Optimization” Perspective 88

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of  Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff  prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/
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• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of  Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff  prediction

• Major part of  deep learning is trying to choose the 
right function…

… instead of  trying to improve training with 
regularization and new optimizers

– Need to make gradient descent work, even at the cost of  a 
substantially engineering the model

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/
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Stride – Step Size When Moving Kernel Across Input 91

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Padding – Size of  Zero Frame Around Input 92

Fleuret, Deep Learning Course

https://fleuret.org/dlc/
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Examples 94

Self-driving Mario Kart with RNN: YouTube video

https://youtu.be/Ipi40cb_RsI
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Shen et al., 2017

https://arxiv.org/abs/1712.05884
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Neural Message Passing 97

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Examples 98

Schutt et al. 2017

https://www.nature.com/articles/ncomms13890


Deep Sets
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What if  our data has no time structure? 

• Data may be variable in length but have no 
temporal structure à Data are sets of  values

• One option: If  we know about the data domain, 
could try to impose an ordering, then use RNN

• Better option: use system that can operate on 
variable length sets in permutation invariant way

–Why permutation invariant à so order doesn’t matter

100
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M. Zaheer et. al 2017

Outlier detection

Medical Imaging

M. Ilse et al., 2018

With more complex architecture

https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1802.04712

