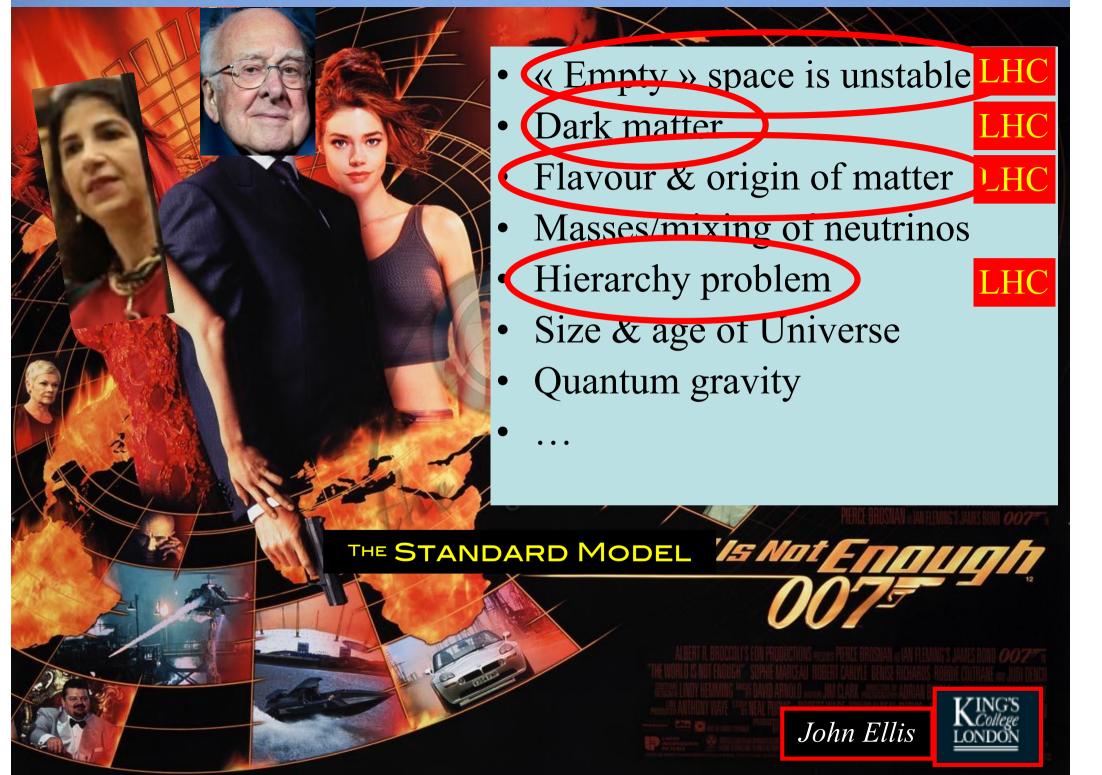
New Physics Beyond the Standard Model

Lecture 1: Why the Higgs boson is puzzling What can the Higgs boson tell us? Looking beyond it

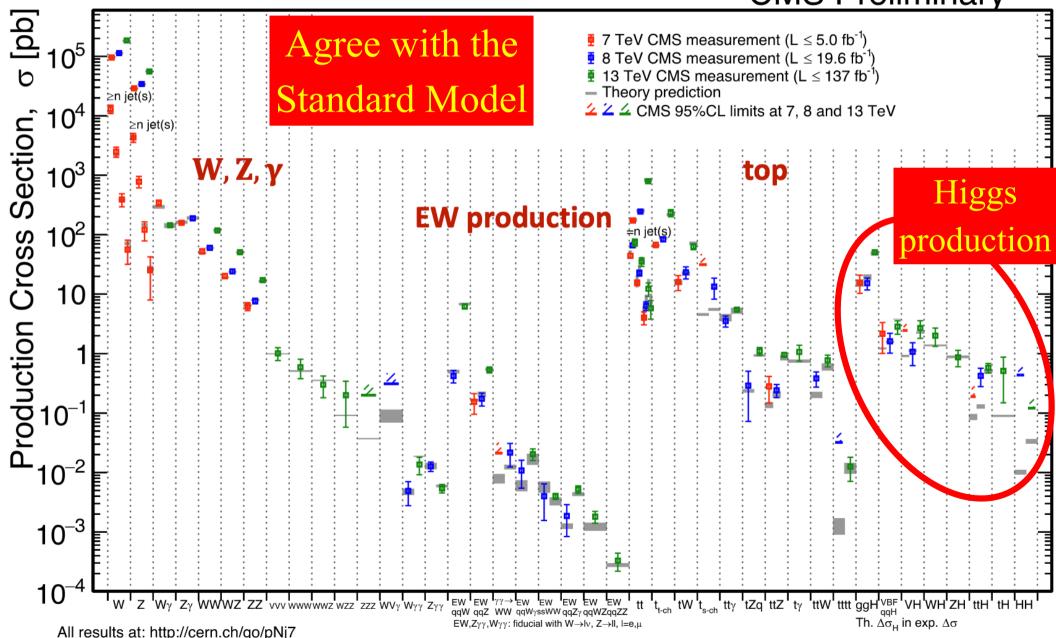
John Ellis

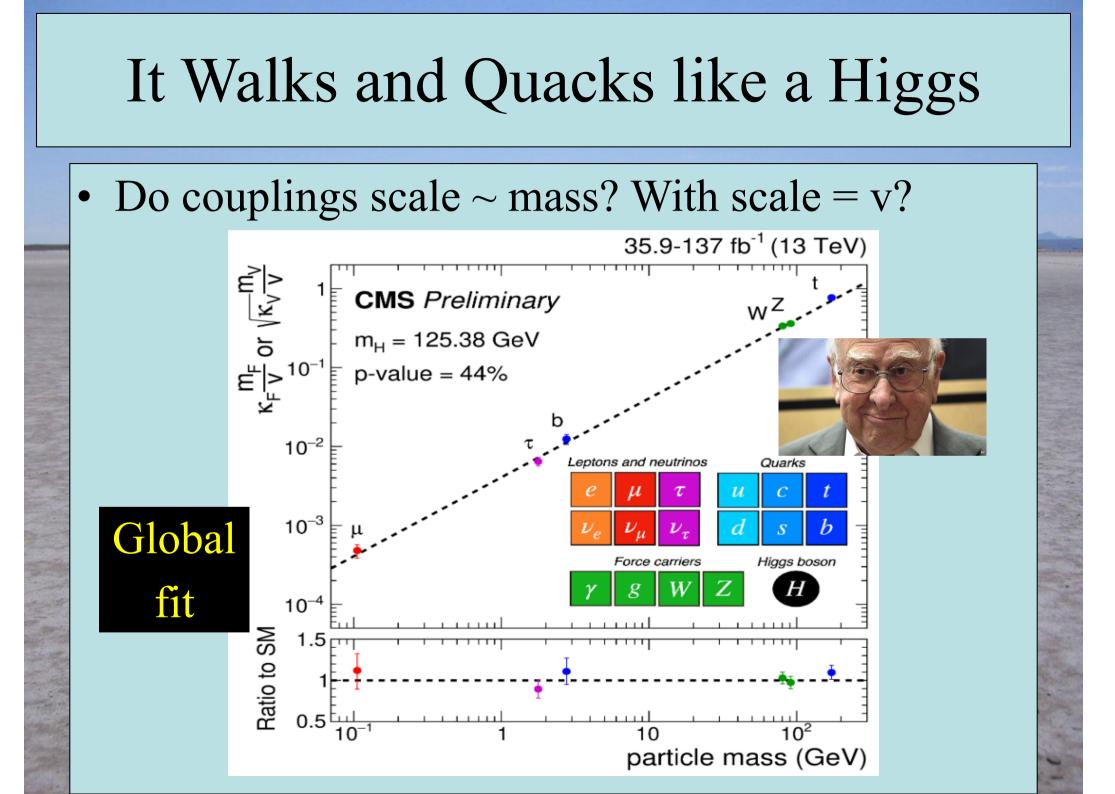

Where are we? Summary of the Standard Model

• Particles and $SU(3) \times SU(2) \times U(1)$ quantum numbers:

	L_L E_R	$ \begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_L, \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}_L, \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}_L \\ e_R^-, \mu_R^-, \tau_R^- \end{pmatrix} $	(1,2,-1) (1,1,-2)	
	Q_L U_R D_R	$ \begin{pmatrix} u \\ d \end{pmatrix}_{L}, \begin{pmatrix} c \\ s \end{pmatrix}_{L}, \begin{pmatrix} t \\ b \end{pmatrix}_{L} $ $ u_{R}, c_{R}, t_{R} $ $ d_{R}, s_{R}, b_{R} $	$(3,2,+1/3) \\ (3,1,+4/3) \\ (3,1,-2/3)$	
nai	on c		an interactions Tostad < 0.10	

Lagrangian: $\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\ \mu\nu}$ gauge interactions T + $i\bar{\psi} / D\psi + h.c.$ matter fermions + $\psi_i y_{ij} \psi_j \phi + h.c.$ Yukawa interactions + $|D_{\mu} \phi|^2 - V(\phi)$ Higgs potential


before LHC Testing now in progress



LHC Measurements

June 2021

CMS Preliminary

... to make an end is to make a beginning. The end is where we start from. T.S. Eliot, Little Gidding

Everything about Higgs is Puzzling

$$\mathcal{L} = yH\psi\overline{\psi} + \mu^2|H|^2 - \lambda|H|^4 - V_0 + \dots$$

- Pattern of Yukawa couplings y:
 - Flavour problem
- Magnitude of mass term μ:
 - Naturalness/hierarchy problem
- Magnitude of quartic coupling λ:
 Stability of electroweak vacuum
- Cosmological constant term V₀:
 - Dark energy

Higher-dimensional interactions?

Parameters of the Standard Model

- Gauge sector:
 - -3 gauge couplings: g_3 , g_2 , g_3
 - 1 strong CP-violating phase
- Yukawa interactions:
 - 3 charged-lepton masses
 - 6 quark masses
 - 4 CKM angles and phase
- Higgs sector:
 - -2 parameters: μ , λ
- Total: 19 parameters

Unification?

Flavour?

Naturalness of hierarchy of mass scales

Loop Corrections to Higgs Mass²

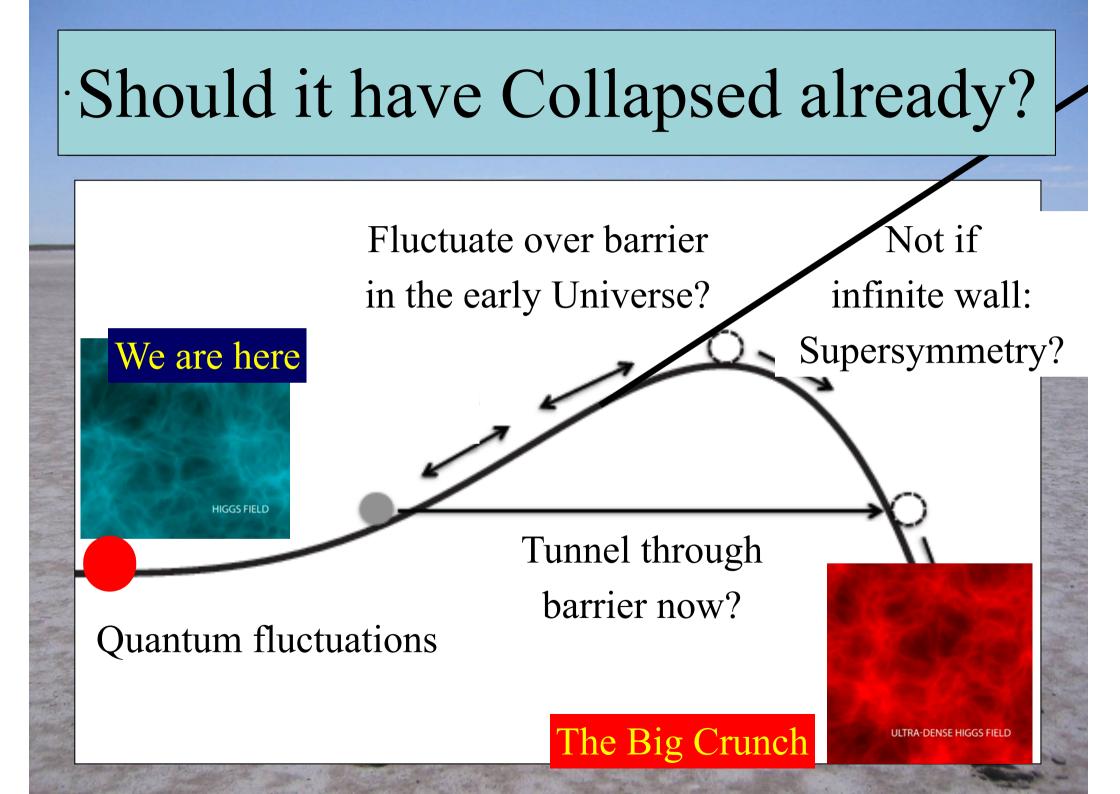
• Consider generic fermion and boson loops:

• Each is quadratically divergent: $\int d^4k/k^2$

$$\Delta m_H^2 = -\frac{y_f^2}{16\pi^2} [2\Lambda^2 + 6m_f^2 \ln(\Lambda/m_f) + ...]$$

$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} [\Lambda^2 - 2m_S^2 \ln(\Lambda/m_S) + \dots]$$

• Leading divergence cancelled if $\lambda_S = y_f^2 \ge 2$ Supersymmetry!

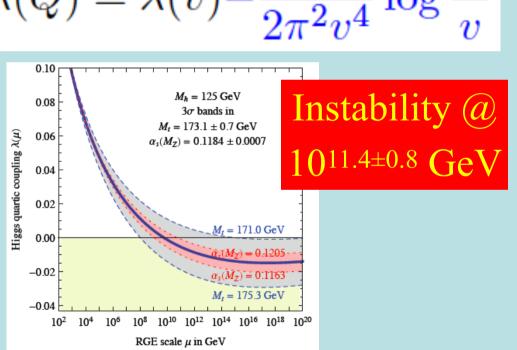

What lies beyond the Standard Model?

Supersymmetry

Stabilize electroweak vacuum

New motivations From LHC Run 1

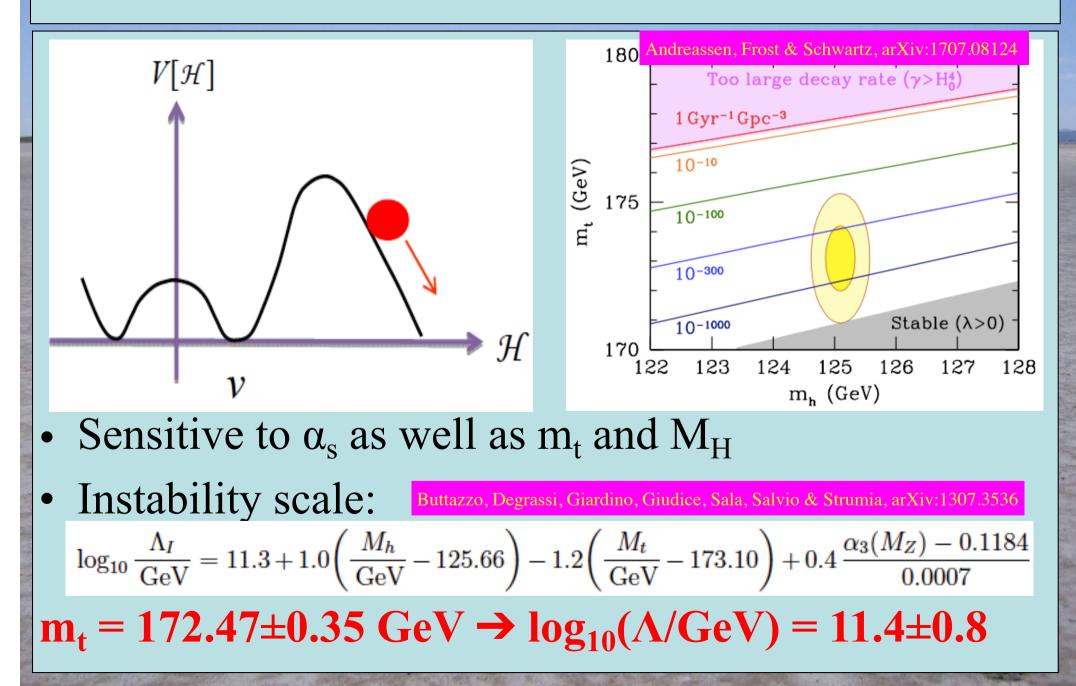
- Successful prediction for Higgs mass
 - Should be < 130 GeV in simple models</p>
- Successful predictions for couplings
 Should be within few % of SM values
- Naturalness, GUTs, string, inflation, dark matter, ..

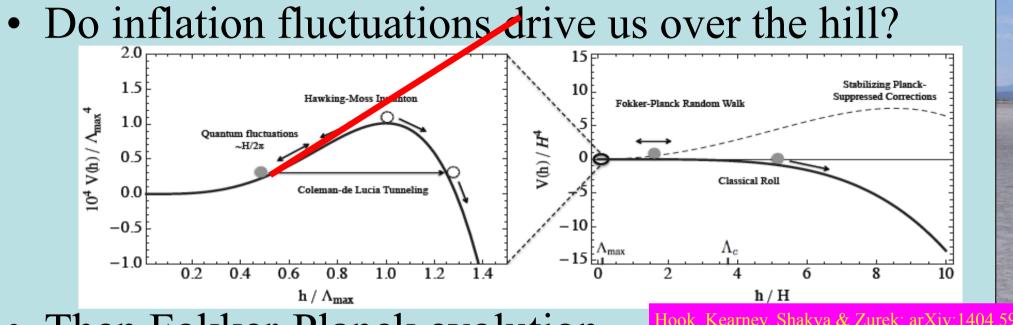


Theoretical Constraints on Higgs Mass

• Large $M_h \rightarrow$ large self-coupling \rightarrow blow up at lowenergy scale Λ due to renormalization

$$\lambda(Q) = \frac{\lambda(v)}{1 - \frac{3}{4\pi^2}\lambda(v)\log\frac{Q^2}{v^2}} \left| \lambda(Q) = \lambda(v) - \frac{3m_t^4}{2\pi^2 v^4}\log\frac{1}{2\pi^2 v^4} \log\frac{1}{2\pi^2 v^4} \log\frac{1}{2\pi^$$


 Small: renormalization due to t quark drives quartic coupling < 0 at some scale Λ
 → vacuum unstable


Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio & Strumia, arXiv:1307.3536

• Vacuum could be stabilized by **Supersymmetry**

Vacuum Instability in the Standard Model

Instability during Inflation?

 10^{-1}

Analytic soln (Eq. 15)

Analytic soln from [12]

10²

 $(1 - e^{-B_{HM}})^{N_e}$

 H/Λ_{max}

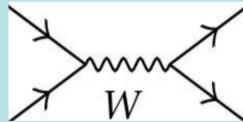
- Then Fokker-Planck evolution
- Big Crunch probably eats us!
 Disaster if so

Stabilize vacuum with BSM physics?

"Build a wall" with supersymmetry?

Looking Beyond the Standard Model with the SMEFT

"...the direct method may be used...but indirect methods will be needed in order to secure victory...."


"The direct and the indirect lead on to each other in turn. It is like moving in a circle...." Who can exhaust the possibilities of their combination?"

Sun Tzu, The Art of War

John Ellis

Effective Field Theories (EFTs) a long and glorious History

- 1930's: "Standard Model" of QED had d=4
- Fermi's four-fermion theory of the weak force
- Dimension-6 operators: form = S, P, V, A, T?
 Due to exchanges of massive particles?
- V-A \rightarrow massive vector bosons \rightarrow gauge theory

- Yukawa's meson theory of the strong N-N force

 Due to exchanges of mesons? → pions
- Chiral dynamics of pions: $(\partial \pi \partial \pi)\pi\pi$ clue \rightarrow QCD

Standard Model Effective Field Theory a more powerful way to analyze the data

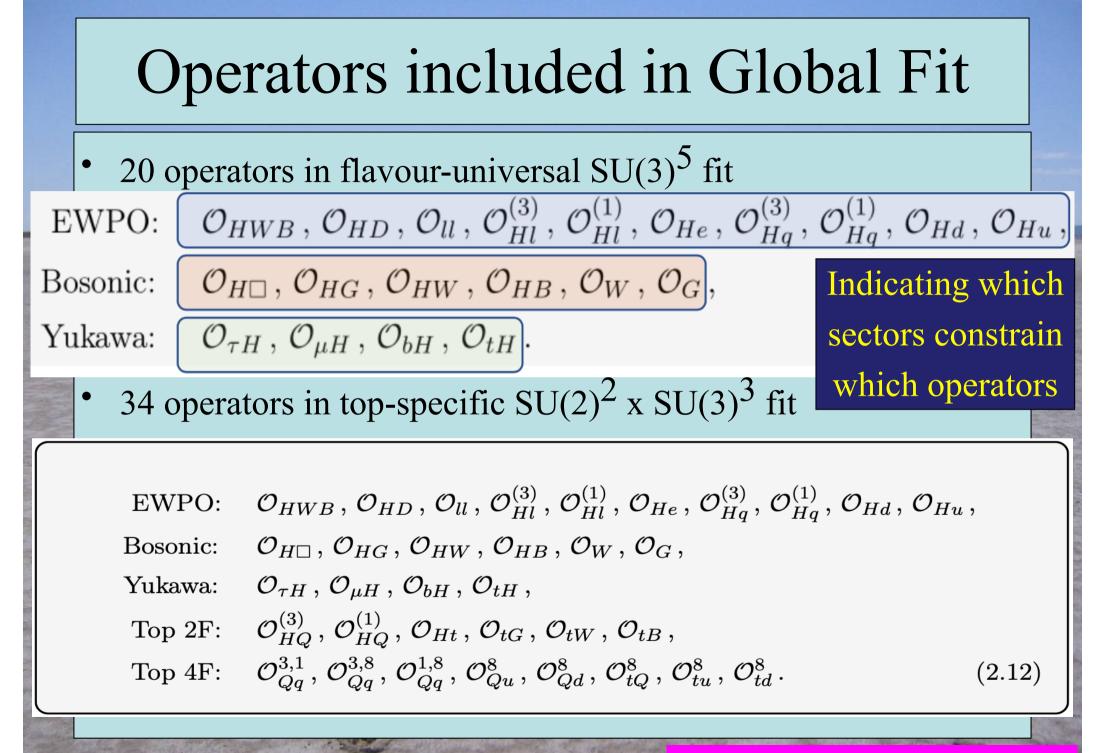
- Assume the Standard Model Lagrangian is correct (quantum numbers of particles) but incomplete
- Look for additional interactions between SM particles due to exchanges of heavier particles
- Analyze Higgs data together with electroweak precision data and top data
- Most efficient way to extract largest amount of information from LHC and other experiments
- Model-independent way to look for physics beyond the Standard Model (BSM)

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Summarize Analysis Framework

• Include all leading dimension-6 operators?

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i=1}^{2455} \frac{C_i}{\Lambda^2} \mathcal{O}_i$$


- Simplify by assuming flavour SU(3)⁵ or SU(2)² x SU(3)³ symmetry for fermions (maybe there is something special about top quark?)
- Work to linear order in operator coefficients, i.e. $\mathcal{O}(1/\Lambda^2)$
- Use G_F , M_Z , α as input parameters

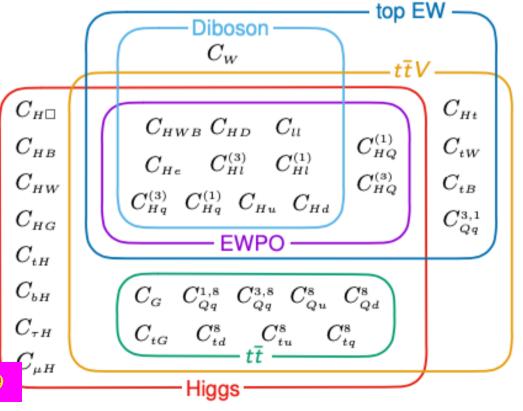
Dimension-6 Operators in Detail

- Including 2- and 4fermion operators
- Different colours for different precision data sectors
- Grey cells violate
 SU(3)⁵ symmetry
- Important when including top observables

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

 H^6 and H^4D^2 $\psi^2 H^3$ X^3 $f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$ \mathcal{O}_{H} $(H^{\dagger}H)^3$ \mathcal{O}_{eH} $(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$ \mathcal{O}_{G} $\mathcal{O}_{\tilde{c}}$ $f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\mu}G^{C\mu}_{\rho}$ $(H^{\dagger}H) \sqcap (H^{\dagger}H)$ \mathcal{O}_{uH} $\mathcal{O}_{H\square}$ $(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$ $\varepsilon^{IJK}W^{I\nu}W^{J\rho}W^{K\mu}$ \mathcal{O}_W $(H^{\dagger}D^{\mu}H)^{\star}(H^{\dagger}D_{\mu}H)$ \mathcal{O}_{dH} $(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$ $\mathcal{O}_{\mu D}$ $\varepsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W$ $\mathcal{O}_{\widetilde{w}}$ $\psi^2 H^2 D$ $\psi^2 X H$ $H^{\dagger}H G^{A}_{\mu\nu}G^{A\mu\nu}$ $(H^{\dagger}i D_{\mu} H)(\bar{l}_{p} \gamma^{\mu} l_{r})$ \mathcal{O}_{HG} $(\iota_n \sigma^{\mu\nu} e_r) \tau^I$ \mathcal{O}_{eW} $(H^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$ $(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$ ${\cal O}_{Hl}^{(3)}$ $\mathcal{O}_{H\tilde{G}}$ $\Pi \Pi G_{\mu\nu} G^{A\mu\nu}$ \mathcal{O}_{eB} $\mu\nu T^A \eta) \widetilde{\Pi} \mathcal{L}_{\mu\nu}$ \mathcal{O}_{HW} $H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$ $(H^{\dagger}iD_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$ \mathcal{O}_{uG} \mathcal{O}_{He} $H^{\dagger}H \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$ $\mathcal{O}_{Ha}^{(1)}$ $(H^{\dagger}iD_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$ $\mathcal{O}_{H\widetilde{W}}$ $(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$ \mathcal{O}_{uW} $(H^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} H) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$ $(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{H} B_{\mu\nu}$ $\mathcal{O}_{H_{q}}^{(3)}$ $\mathcal{O}_{{}_{HB}}$ $H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$ \mathcal{O}_{uB} $H^{\dagger}H \widetilde{B}_{\mu\nu}B^{\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$ $(H^{\dagger}i D_{\mu} H)(\bar{u}_p \gamma^{\mu} u_r)$ $\mathcal{O}_{H\widetilde{B}}$ ${\cal O}_{dG}$ \mathcal{O}_{Hu} $H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$ $(H^{\dagger}iD_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$ \mathcal{O}_{HWB} \mathcal{O}_{dW} ${\cal O}_{Hd}$ $H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$ $i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$ $\mathcal{O}_{H\widetilde{W}B}$ \mathcal{O}_{Hud} \mathcal{O}_{dB} $(\bar{R}R)(\bar{R}R)$ $(\bar{L}L)(\bar{L}L)$ $(\bar{L}L)(\bar{R}R)$ \mathcal{O}_{ee} $(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$ \mathcal{O}_{le} \mathcal{O}_{ll} $(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$ $(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$ $\mathcal{O}_{_{qq}}^{_{(1)}}$ $(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$ \mathcal{O}_{uu} $(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$ \mathcal{O}_{lu} $_{o}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma)$ $\mathcal{O}_{qq}^{(3)} \ \mathcal{O}_{lq}^{(1)}$ $(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$ \mathcal{O}_{dd} $(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$ \mathcal{O}_{ld} $(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$ \mathcal{O}_{qe} \mathcal{O}_{eu} $(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$ $p \gamma_{\mu} e_r) (u_s \gamma' u$ $p \left[\mu l_r \right] (q_s) = q_s$ $\mathcal{O}_{la}^{(3)}$ $\mathcal{O}_{_{qu}}^{_{(1)}}$ $(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$ \mathcal{O}_{ed} $(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$ $(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$ $\mathcal{O}_{ud}^{(1)}$ $\mathcal{O}_{av}^{(8)}$ $(\bar{u}_{r}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d)$ $T^A q_r)(\bar{u}_s \gamma^{\mu} T^A u_t)$ $\mathcal{O}_{ud}^{(8)}$ $(\bar{u}_p \gamma_\mu T^A u_r) (d_s \gamma_s)$ decay anomalies $(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$ \mathcal{O}_{ledg} \mathcal{O}_{dua} $(d_n^{\alpha})^T C u_r^{\beta} | | (q_s^{\beta}) |$ $(a_p^s e_r)(a_s q_t)$ $\mathcal{O}_{quqd}^{(1)}$ $(a_k) \in ik (\bar{a}^k)$ $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_{n}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(u_{s}^{\gamma})^{T}Ce_{t}\right]$ $\mathcal{O}_{_{qqu}}$ $\mathcal{O}_{quqd}^{(8)}$ $\varepsilon^{lphaeta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{lpha j})^T C q_r^{eta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$ $(\bar{q}_{n}^{j}T^{A}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}T^{A}d_{t})$ \mathcal{O}_{qqq} $\mathcal{O}_{lequ}^{(1)}$ $\varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(u_s^{\gamma})^T C e_t \right]$ \mathcal{O}_{duu} ener Eiklys $\mathcal{O}_{lequ}^{(3)}$ $(\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$ Baryon decay

Search for BSM Single-Field Extensions of the Standard Model

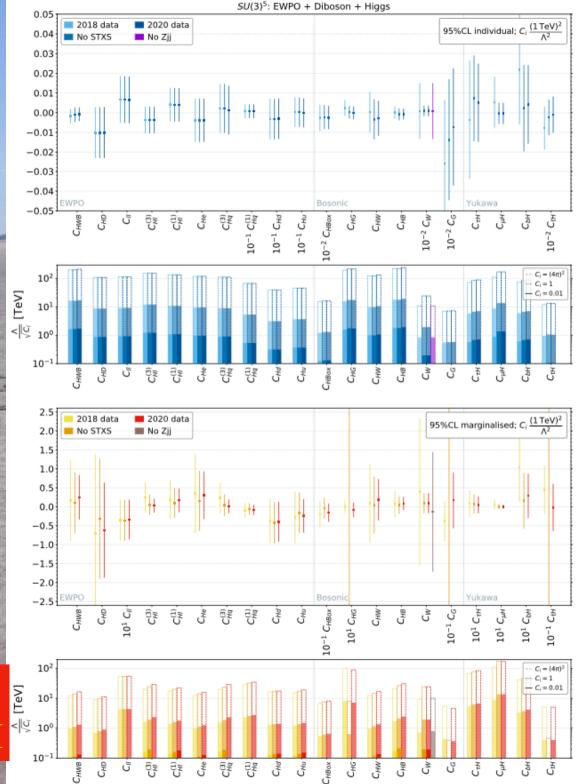

	Name	Spin	SU(3)	SU(2)	U(1)	Name	Spin	SU(3)	SU(2)	U(1)
	S	0	1	1	0	Δ_1	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
1	S_1	0	1	1	1	Δ_3	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
	arphi	0	Spin ze	ero <mark>2</mark>	$\frac{1}{2}$	Σ	$\frac{1}{2}$	1	3	0
	[1]	0	1	3	0	Σ_1	$\frac{1}{2}$	1	3	-1
	11		1	3	1	U	$\frac{1}{2}$	3	1	$\frac{2}{3}$
	PA	1	1	1	0	D	$\frac{1}{2}$	3	1	$-\frac{1}{3}$
The last	B_1	1	Vector-	1	1	Q_1	$\frac{1}{2}$	3	2	$\frac{1}{6}$
	W	1		3	0	Q_5	$\frac{1}{2}$	3	2	$-\frac{5}{6}$
	W_1	1	1	3	1	Q_7	$\frac{1}{2}$	3	2	$\frac{7}{6}$
K J L	N	$\frac{1}{2}$	1	1	0	T_1	$\frac{1}{2}$	3	3	$-\frac{1}{3}$
the state	E	$\frac{1}{2}$	1	1	-1	T_2	$\frac{1}{2}$	3	3	$\frac{2}{3}$
the the start	T	$\frac{1}{2}$	3	1	$\frac{2}{3}$		$\frac{1}{2}$	3	2	$\frac{1}{6}$

Contributions to SMEFT Coefficients

	Model	C_{HD}	C_{ll}	C_{Hl}^3	C_{Hl}^1	C_{He}	$C_{H\square}$	$C_{ au H}$	C_{tH}	C_{bH}
Spin ze	ero S						-1			
opin Z	S_1			F	2					
	Σ			$\frac{5}{8}$	$\frac{\frac{3}{16}}{-\frac{3}{16}}$			$\frac{y_{\tau}}{4}$		
Constanting of the local division of the loc	Σ_1			$-\frac{5}{8}$	$-\frac{5}{16}$			$\frac{y_{\tau}}{8}$		
	N E			$-\frac{1}{4}$	$\frac{\frac{1}{4}}{1}$			$y_{ au}$		
				$-\frac{1}{4}$	$-\frac{1}{4}$	1		$rac{y_{ au}}{2} \ y_{ au}$		
	$egin{array}{c c} \Delta_1 & \ \hline \Delta_3 & \end{array}$					$\frac{\frac{1}{2}}{-\frac{1}{2}}$		$rac{y_{ au}}{2}$ $rac{y_{ au}}{2}$		
	B_1	1				2	$-\frac{1}{2}$	$\frac{2}{-\frac{y_{\tau}}{2}}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
Spin ze		-2					$\frac{1}{2}$	$y_{ au}$	U_t	y_b
		ector $-\frac{1}{4}$						$-\frac{g_{\tau}}{2}$	$-\frac{gt}{2}$	
Spin ze								$- u_{ au}$	$-y_t$	$-y_{b}$
and the second	$\{B,B_1\}$	Vector					1	$y_{ au}$	y_t	ЦЬ
	$\{Q_1,Q_7\}$								y_t	
	Model	C_{HG}	C_{Hq}^3	C^1_{Hq}	$(C^3_{Hq})_{33}$	$(C^1_{Hq})_{33}$	C_{Hu}	C_{Hd}	C_{tH}	C_{bH}
States and	U		$\frac{-\frac{1}{4}}{-\frac{1}{4}}$	$\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$			$\frac{y_t}{2}$	
with a st	D		$-\frac{1}{4}$	$-\frac{1}{4}$	$\begin{array}{c} -\frac{1}{4} \\ -\frac{1}{4} \end{array}$	$-\frac{1}{4}$				$\frac{y_b}{2}$
The state	Q_5							$-\frac{1}{2}$		$\frac{y_b}{2}$
in the second	Q_7		F		F		$\frac{1}{2}$		$\frac{y_t}{2}$	
- Alerand	T_1		$-\frac{5}{8}$ $-\frac{5}{8}$	$\frac{-\frac{3}{16}}{\frac{3}{16}}$	$-\frac{58}{8}$	$\frac{-\frac{3}{16}}{\frac{3}{16}}\\\frac{1}{2}\frac{M_T^2}{v^2}$			$\frac{\frac{y_t}{4}}{\frac{y_t}{8}}$	$\frac{y_b}{8}$
The second	T_2	$M^2 \approx (0.02)$	$-\frac{5}{8}$	$\frac{3}{16}$	$-\frac{5}{8}$	$\frac{3}{16}$			$\frac{\frac{g_t}{8}}{M^2}$	$\frac{y_b}{4}$
man an	T	$-rac{M_T^2}{v^2}rac{lpha_s(0.02)}{8\pi}$			$-rac{1}{2}rac{ ilde{M}_T^2}{v^2}$	$\frac{1}{2}\frac{w_T}{v^2}$			$ y_t rac{w_T}{v^2}$	

Global SMEFT Fit to Top, Higgs, Diboson, Electroweak Data

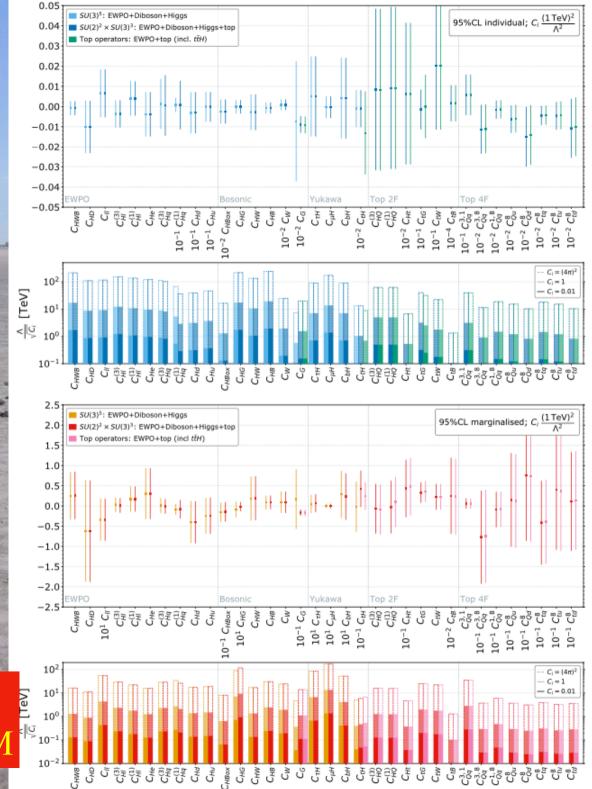
- Global fit to dimension-6 operators using precision electroweak data, W+W- at LEP, top, Higgs and diboson data from LHC Runs 1 & 2
- Search for BSM
- Constraints on BSM
 - At tree level
 - At loop level
 - Supersymmetry


Data included in Global Fit

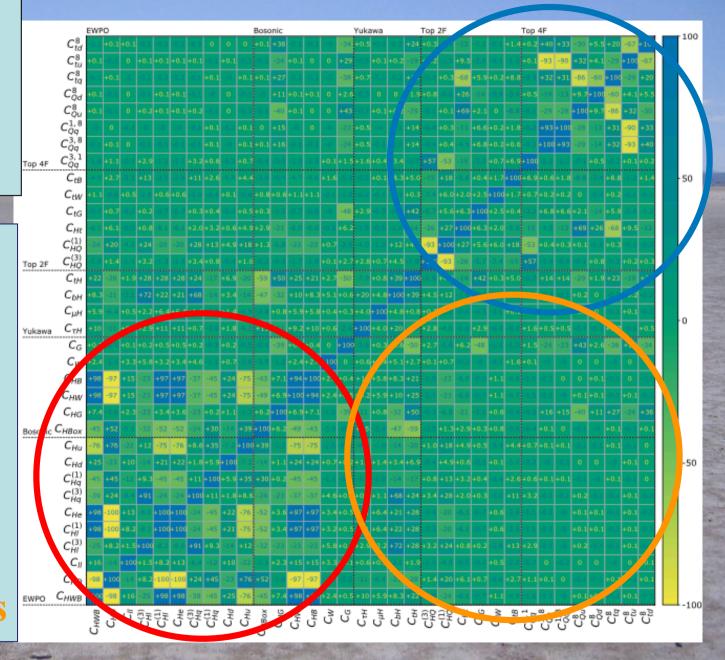
	EW precision observables								
		LHC Run 2 Higgs	Tevatron & Run 1 top nob	s Ref.					
	Precision electroweak measurem	ATLAS combination	Tevatron combination of differential $t\bar{t}$ forward-backward asymmetry, 4	[7]					
	$\Gamma_Z, \sigma_{\text{had.}}^0, R_\ell^0, A_{FB}^\ell, A_\ell(\text{SLD}), A$	including ratios of bra	$A_{FB}(m_{s\bar{s}}).$	L.1					
	Combination of CDF and D0 W	Signal strengths coars	ATLA Run 2 top	nobs	Ref.				
	LHC run 1 W boson mass measu	CMS LHC combinatio	$\frac{d\sigma}{dm_{t\bar{t}}}$ CMS $t\bar{t}$ differential distributions in the dilepton channel.	6	36,				
	Diboson LEP & LHC	Production: ggF , VB	ATLA $\frac{d\sigma}{dm_{i\bar{i}}}$		231]				
2		Decay: $\gamma\gamma$, ZZ, W ⁺ W	$\frac{dm_{e\bar{t}}}{CMS t\bar{t}}$ $\frac{CMS t\bar{t}}{t\bar{t}}$ differential distributions in the ℓ +jets channel.	10	[37]				
	W^+W^- angular distribution me	CMS stage 1.0 STXS	$\frac{d\sigma}{dm_{t\bar{t}}}$ $\frac{d\sigma}{dm_{t\bar{t}}}$						
	$W^+ W^-$ total cross section meas	13 parameter fit 7 pa	$\overline{\text{CMS}}$ ATLAS measurement of differential t \overline{t} charge asymmetry, $A_C(m_{t\bar{t}})$.	5	[38]				
	final states for 8 energies	- , -	dilepte ATLAS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	2	[39]				
	$W^+ W^-$ total cross section meas	CMS stage 1.0 STXS	ATLA CMS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	11	[40]				
No.	qqqq final states for 7 energies	CMS stage 1.1 STXS	dilepte CMS $t\bar{t}Z$ differential distributions. ATLA $d\sigma$ $d\sigma$	44	[41]				
111	$W^+ W^-$ total cross section meas	CMS differential cross	$\begin{array}{c c} \text{ATLA} \\ A_C(m) \end{array} \begin{array}{c} \frac{d\sigma}{dp_Z^{T}} \end{array} & \frac{d\sigma}{d\cos\theta^*} \end{array}$						
	& qqqq final states for 8 energies	tion in the $WW^* \to \ell$	CMS CMS measurement of differential cross sections and charge ratios for t	- 5 5	[42]				
11.1	ATLAS W^+W^- differential cro	$\frac{d\sigma}{dn_{jet}}$ $\frac{d\sigma}{dp_H^T}$	$\frac{d\sigma}{dm_{e7}dy}$ channel single-top quark production.						
	$p_T > 120$ GeV overflow bin	ATLAS $H \to Z\gamma$ sign	$\frac{d\sigma}{dp_{t+\bar{t}}^T} \left R_t \left(p_{t+\bar{t}}^T \right) \right $						
5	ATLAS W^+W^- fiducial differen	ATLAS $H \rightarrow \mu^+ \mu^-$ si	decay. CMS measurement of <i>t</i> -channel single-top and anti-top cross sections.	4	[43]				
111	$\frac{d\sigma}{dp_{\ell_1}^T}$		ATLA f_0 f_t σ_t , $\sigma_{\bar{t}}$, $\sigma_{t+\bar{t}}$ & R_t .						
1		1	f_0, f_L CMS measurement of the <i>t</i> -channel single-top and anti-top cross sections	. 1 1 1 1	[44]				
	ATLAS $W^{\pm} Z$ fiducial differentia	l cross section in the ℓ^+	$f_0, f_L = \sigma_t \sigma_{\bar{t}} \sigma_{t+\bar{t}} R_t.$						
et la	$\frac{d\sigma}{dp_Z^T}$		ATLA CMS <i>t</i> -channel single-top differential distributions.	4 4	[45]				
N. N.	CMS $W^{\pm}Z$ normalised fiducial d	ifferential cross section	$\frac{\text{CMS}}{\text{M}} \left \frac{d\sigma}{dp_{t+\bar{t}}^T} \right \frac{d\sigma}{d y_{t+\bar{t}} } $						
1 1	channel, $\frac{1}{\sigma} \frac{d\sigma}{dp_{\sigma}^T}$		$\begin{array}{c} \begin{array}{c} \text{ATLA} \\ \frac{d\sigma}{dp_t^T} \\ \frac{d\sigma}{dp_t^T} \end{array} \\ \begin{array}{c} \text{CMS } tZ \text{ cross section measurement.} \end{array} \\ \end{array} \\ \begin{array}{c} 328 \text{ meas} \\ 328 \text{ meas} \\ \end{array} \\ \end{array}$	uremer	nts 📃				
	ATLAS Zjj fiducial differential c	ross section in the $\ell^+\ell^-$	$\frac{dp_t^T}{CMS} \xrightarrow{T} CMS tZ \text{ cross section measurement.}$						
No. of			CMS tW cross section measurement.	led in					
17	LHC Run 1 Higgs		$\frac{1}{dp^T}$						
	ATLAS and CMS LHC Run 1 co	mbination of Higgs sign	CMS_{ℓ} CMS $tZ(Z \rightarrow \ell^+ \ell^-)$ cross section measurement	1 •					
Production: ggF, VBF, ZH, WH & ttH			$\frac{\sigma_t \sigma_{t+\tilde{t}} R_t}{\sigma_t \sigma_{t+\tilde{t}} R_t}$	inalys1s	5				
Decay: $\gamma\gamma$, ZZ, W^+W^- , $\tau^+\tau^-$ & $b\bar{b}$			ATLAS s-channel single-top cross section measurement.		ALC: NO.				
ATLAS inclusive $Z\gamma$ signal strength measurement			CMS tW cross section measurement. 1 ATLAS tW cross section measurement in the single lepton channel 1	[33]	Carlo and				
	The state of the s	Sen mousurement	ATLAS tW cross section measurement in the study buttle thanks. Sanz & You	arXiv:2012.01	2779				
	and the second of the second of the second	and the second second second second second	- ve, hudiguit, hindst, builz te rou						

Dimension-6 Constraints with Flavour-Universal SU(3)⁵ Symmetry

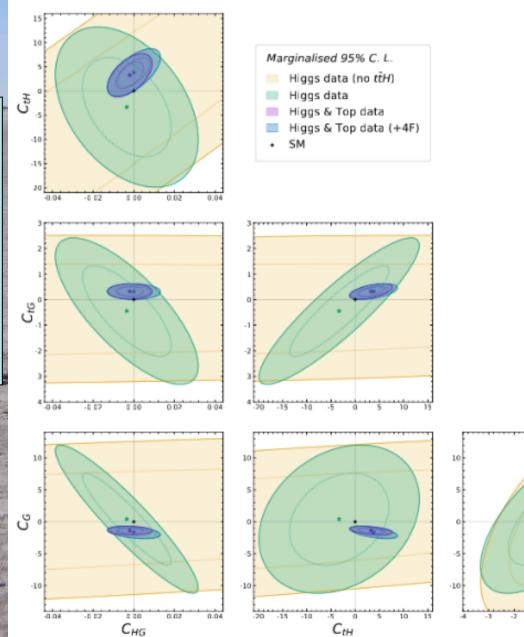
- Individual operator coefficients
- Marginalised over all other operator coefficients

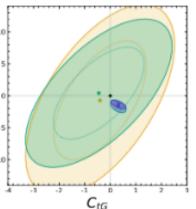

No significant igan, Mir deviations from SM

Dimension-6 Constraints with Top-Specific $SU(2)^2 \times SU(3)^3$


- Individual operator coefficients
- Marginalised over all other operator coefficients

No significant deviations from SM

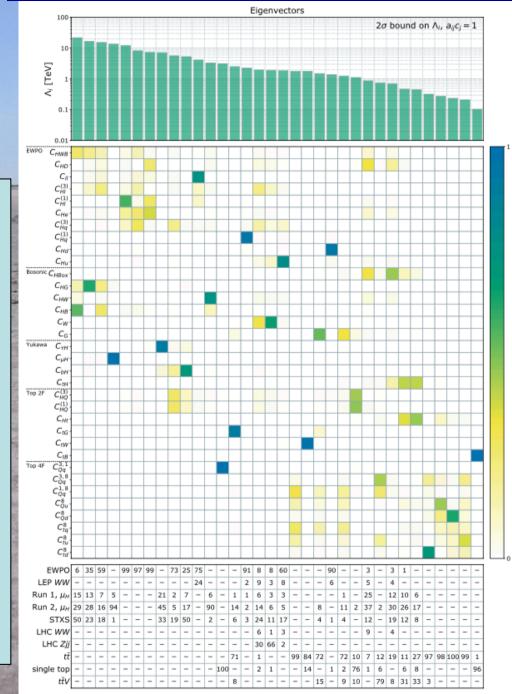

Correlation Analysis


- EWPO and boson sectors correlated
- Also within top sector
- Weaker correlations between sectors

Example of Interplay between Data Sets

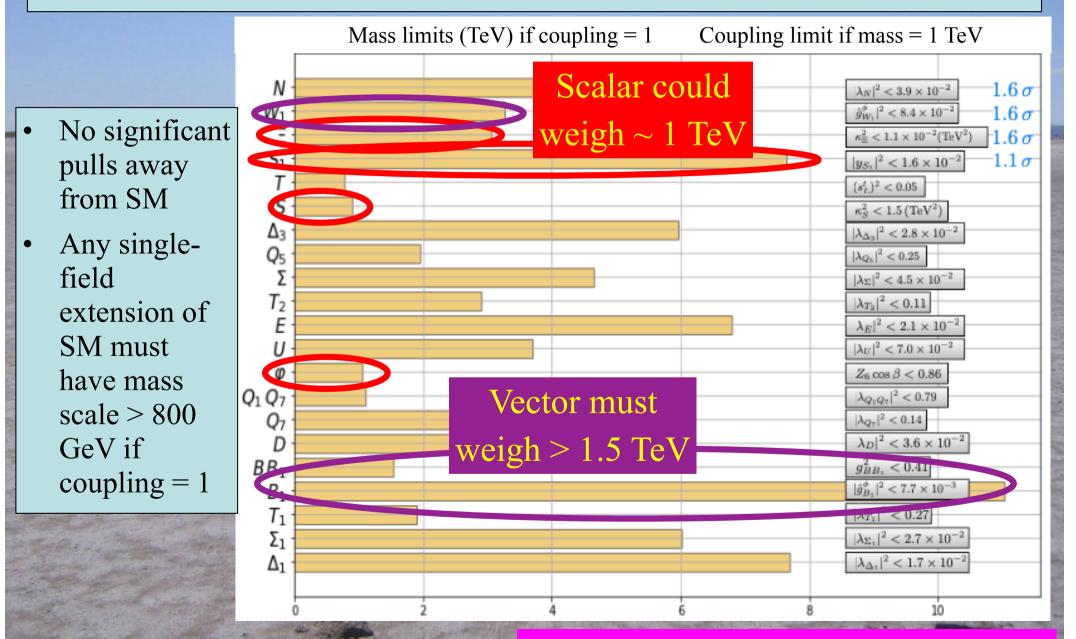
- Higgs data
- Include ttH
- Include top data
- Global analysis

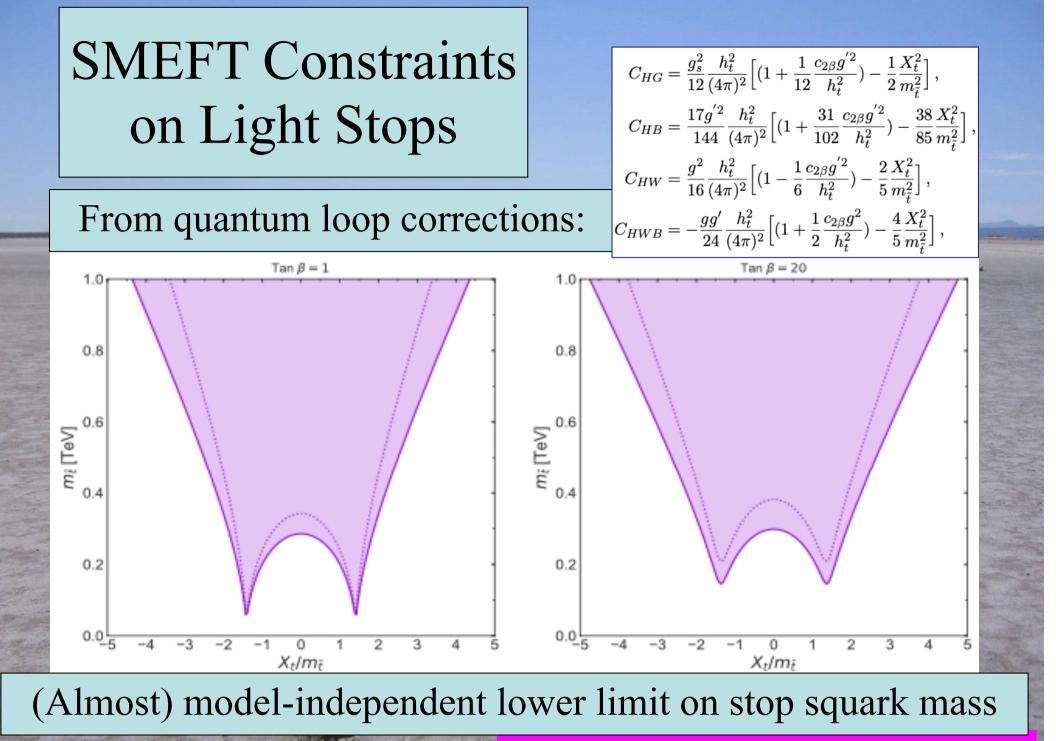
Principal Component Analysis


- Diagonalise correlation matrix
- Analyze eigenvectors and eigenvalues
- Scales from 20 TeV to 100 GeV
- Strongest constraints from Electroweak, H

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Less constrained operator combinations \rightarrow

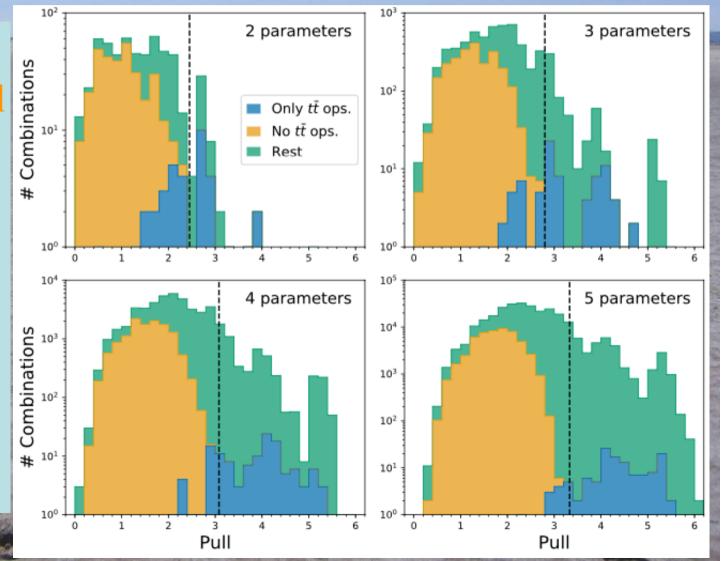

elative importance


(%)

Relative constraining power (%)


Constraints on Single-Field BSM Scenarios

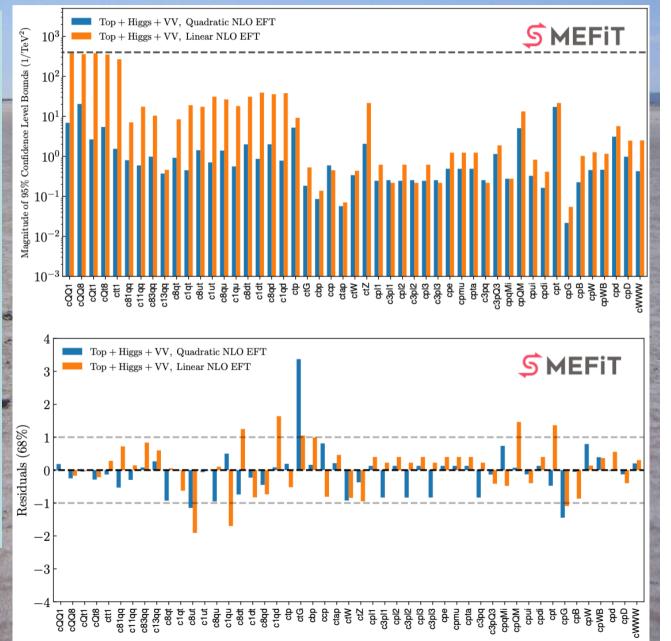
Direct Search Constraints on Light Stops


- Patchwork of many modeldependent searches
- Indirect constraint excludes lowmass region (almost) modelindependently

Model-Independent BSM Survey

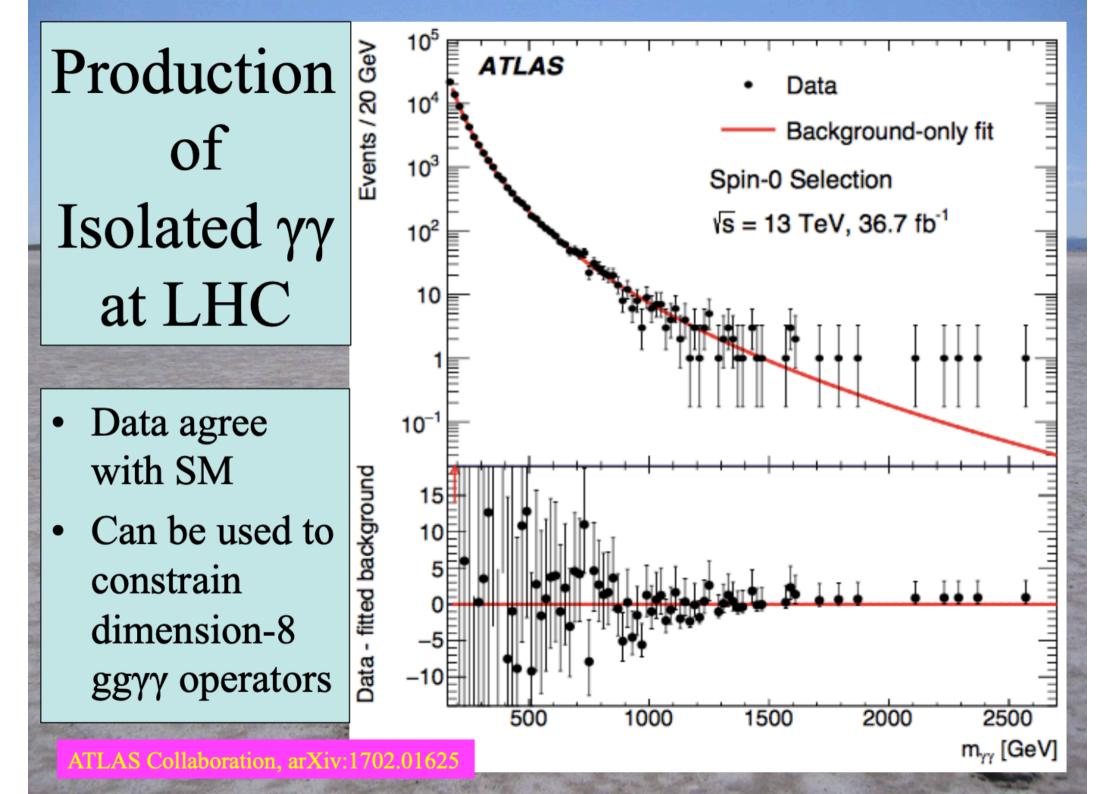
Switch on random subsets of 2, 3, 4 or 5 operators

- Top-less sector fits SM very well
- Top sector does not fit so well
- Mixed set intermediate
- Overall, pulls not excessive
- No hint of BSM

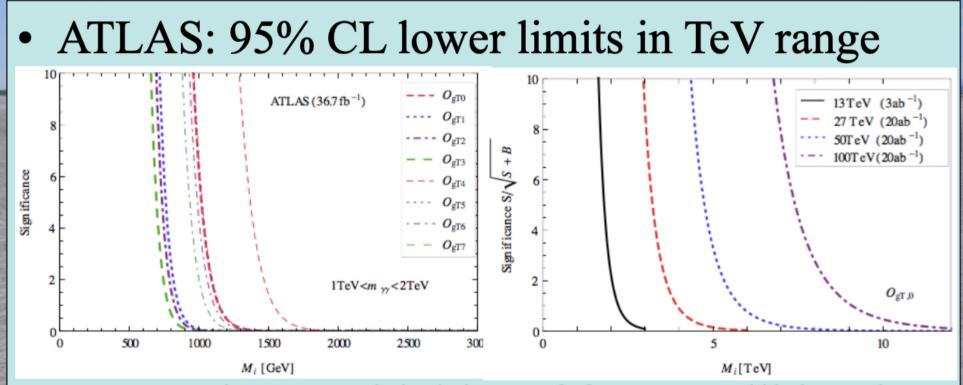

Comparison of Linear and Quadratic Fits

- Quadratic fit assuming EW data = Standard Model
- Tighter constraints in general
- What about dimension
 8, also contribute at

 O(1/Λ⁴)?
- Fitting process slower, difficult to make broad BSM survey


arXiv

Ethier et al



How about Dimension 8?

Some windows of opportunity: Light-by-light scattering $gg \rightarrow \gamma\gamma$ Neutral triple-gauge couplings

Constraints from Collider Data

- Prospective sensitivities of future colliders in multi-TeV range
- Unique window on dimension-8 physics

Summary

- **Remember Sun Tzu:** search for new physics indirectly as well as directly
- SMEFT is an effective, model-independent tool for probing indirectly possible physics beyond the SM
- It can be used to analyze jointly precision electroweak, diboson and top quark data from LHC and elsewhere
- Our current analysis indicates that the scale of new physics is probably > TeV
- Useful for assessing sensitivities of proposed future accelerators

Dimension 4

Standard Model

SMEFT dimensions > 4