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Outline

• Lecture 1
– Brief  introduction to probability and statistics
– Introduction to Machine Learning fundamentals
– Linear Models

• Lecture 2
– Neural Networks
– Deep Neural Networks
– Convolutional, Recurrent, and Graph Neural Networks

• Lecture 3
– Unsupervised Learning
– Autoencoders
– Generative Adversarial Networks and Normalizing Flows
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Beyond Regression and Classification

• Not all tasks are predicting a label from features
– Data synthesis / simulation
– Density estimation
– Anomaly detection
– Denoising, super resolution
– Data compression
– …

• Requires Unsupervised Learning

• Often framed as modeling the lower dimensional 
“meaningful degrees of  freedom” that describe the data
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Modeling Data and Meaningful Degrees of  Freedom 4

Fleuret, Deep Learning Course

https://fleuret.org/dlc/
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Autoencoders
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How to Find Meaningful Representations

• Dimensionality Reduction / Compression
– Compress the data to a latent space with smaller 

number of  dimensions 

– Latent space must encode and retain the important 
information about the data

– One way to frame “retaining important information”: 
We can reconstruct original data from latent space

– Can we learn this compression and latent space?
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Autoencoders 10

• Autoencoders map a space to itself  through a compression

𝑥 = Data                   z = Latent Space

𝑥 → 𝑧 → &𝑥
Full transformation should be close to the identity on the data



Autoencoders 11

– Encoder: Map from to a lower dimensional latent space
• Neural network 𝑓! 𝑥 with parameters 𝜃

𝑥 → 𝑓 𝑥 = 𝑧

• Autoencoders map a space to itself  through a compression

𝑥 = Data                   z = Latent Space

𝑥 → 𝑧 → &𝑥
Full transformation should be close to the identity on the data



Autoencoders 12

– Encoder: Map from to a lower dimensional latent space
• Neural network 𝑓! 𝑥 with parameters 𝜃

– Decoder: Map from latent space back to data space
• Neural network 𝑔" 𝑧 with parameters 𝜓

𝑥 → 𝑓 𝑥 = 𝑧

𝑧 → 𝑔 𝑧 = '𝑥

• Autoencoders map a space to itself  through a compression

𝑥 = Data                   z = Latent Space

𝑥 → 𝑧 → &𝑥
Full transformation should be close to the identity on the data



Autoencoders 13

– Encoder: Map from to a lower dimensional latent space
• Neural network 𝑓! 𝑥 with parameters 𝜃

– Decoder: Map from latent space back to data space
• Neural network 𝑔" 𝑧 with parameters 𝜓

𝑥 → 𝑓 𝑥 = 𝑧

𝑧 → 𝑔 𝑧 = '𝑥

• Autoencoders map a space to itself  through a compression

𝑥 = Data                   z = Latent Space

𝑥 → 𝑧 → &𝑥
Full transformation should be close to the identity on the data

We must:
• Choose latent dimension D
• Learn mapping 𝑓(⋅) and 𝑔(⋅)



Autoencoder Loss

• Loss: mean reconstruction loss (MSE) between data and 
encoded-decoded data

𝐿(𝜃, 𝜓) =
1
𝑁*

'

𝑥' − 𝑔( 𝑓) 𝑥'
*

• Minimize this loss over parameters of  encoder (𝜃) 
and decoder (𝜓).
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Autoencoder Loss

• Loss: mean reconstruction loss (MSE) between data and 
encoded-decoded data

𝐿(𝜃, 𝜓) =
1
𝑁*

'

𝑥' − 𝑔( 𝑓) 𝑥'
*

• Minimize this loss over parameters of  encoder (𝜃) 
and decoder (𝜓).
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NOTE: if 𝑓! 𝑥 and 𝑔" 𝑧 are linear, optimal solution given by Principle Components Analysis



Autoencoder Mappings

If  the latent space is of  lower dimension:

autoencoder must capture a “good” parametrization, 
and in particular dependencies between components

16

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Deep Autoencoder 17

𝑥 𝑧 (𝑥𝑓(") 𝑔($)

• When 𝑓) and 𝑔( are multiple neural network layers, 
can learn complex mappings between 𝑥 and 𝑧
– 𝑓! and 𝑔" can be Fully Connected, CNNs, RNNs, etc.

– Choice of  network structure will depend on data

𝑓(%) 𝑓($) 𝑔(%) 𝑔(")

𝑓! 𝑔"



Deep Convolutional Autoencoder 18

Fleuret, Deep Learning Course

𝑓! and 𝑔" are each
5 convolutional layers

https://fleuret.org/dlc/


Denoising Autoencoders

• Learn a mapping from corrupted data space !𝒳
back to original data space

–Mapping 𝜙! )𝒳 = 𝒳
– 𝜙! will be a neural network with parameters 𝑤

• Loss: 

L =
1
𝑁
'
!

𝑥! − 𝜙"(𝑥! + 𝜖!)

19

Perturbation, e.g. Gaussian noise



Denoising Autoencoders Examples 20

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Autoencoders for Anomaly Detection in HEP 21

Slide credit: G. Kasieczka, Deep Learning in HEP

if poorly reconstructed by autoencoder

https://indico.fnal.gov/event/43762/contributions/192701/attachments/133064/163908/DeepLearning_Fermilab_Summerschool2020.pdf


Can We Generate Data with Decoder? 22

• Can we sample in latent space 
and decode to generate data?

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Can We Generate Data with Decoder? 23

• Can we sample in latent space 
and decode to generate data?

• What distribution to sample 
from in latent space?
– Try Gaussian with mean and 

variance from data

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Can We Generate Data with Decoder?

• Doesn’t work! Don’t know the right latent space density
– This can be done with a Variational Autoencoder (See Backup)
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• Can we sample in latent space 
and decode to generate data?

• What distribution to sample 
from in latent space?
– Try Gaussian with mean and 

variance from data

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Generative Models 25

• Generative models aim to:
– Learn distribution 𝑝(𝑥) that models PDF of  the data
– Draw samples of  plausible data points

• Explicit Models
– Can evaluate the density 𝑝(𝑥) of  a data point x

• Implicit Models
– Can only sample from 𝑝(𝑥), but not evaluate density



Generative Adversarial Networks 26



Generative Modeling as a Two Player Game

• Formulate generative modeling task as a two 
player game

• One player tries to output data that looks as real 
as possible

• Another player tries to compare real and fake data

• In this case we need:
– A generator that can produce samples
– A measure of  not too far from the real data
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Generative Adversarial Network (GAN)

• Generator network 𝒈𝜽(𝒛) with parameters 𝜃
– Map sample from known 𝑝(𝑧) to sample in data space

𝑥 = 𝑔! 𝑧 𝑧~𝑝(𝑧)

– We don’t know what the learned distribution 𝑝!(𝑥) is, 
but we can sample from it à Implicit Model

28Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf


Generative Adversarial Network (GAN)

• Generator network 𝒈𝜽(𝒛) with parameters 𝜃
– Map sample from known 𝑝(𝑧) to sample in data space

𝑥 = 𝑔! 𝑧 𝑧~𝑝(𝑧)

– We don’t know what the learned distribution 𝑝!(𝑥) is, 
but we can sample from it à Implicit Model

• Discriminator Network 𝒅𝝓(𝒙) with parameters 𝜙
– Classifier trained to distinguish between real and fake data

– Classifier is learning to predict 𝑝 𝑖𝑛𝑝𝑢𝑡 = 𝑟𝑒𝑎𝑙 𝑥)

– Classifier is our measure of  not too far from the real data

29Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf


GAN Setup

• Generator goal: 
– Produce fake data to trick discriminator to classify as real

• Discriminator goal: 
– Minimizes miss-classification of  data as real or fake

• Adversarial setup: two networks w/ opposing objectives 

30

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


GAN Objective

• Data
– Real data samples:   𝑥), 𝑦) = 1

– Fake data samples:   &𝑥) = 𝑔*(𝑧)), &𝑦) = 0 with:  𝑧)~𝑝(𝑧)

31

Usually Gaussian 𝒩(0,1)



GAN Objective

• Data
– Real data samples:   𝑥), 𝑦) = 1

– Fake data samples:   &𝑥) = 𝑔*(𝑧)), &𝑦) = 0 with:  𝑧)~𝑝(𝑧)

• For a fixed generator, can train discriminator by 
minimizing the binary cross entropy

32

𝐿 𝜙 = −
1
2𝑁

3
)/0

1

𝑦) log 𝑑2 𝑥) + 1 − 9𝑦) log(1 − 𝑑2 9𝑥) )
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• Data
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GAN Objective

• Data
– Real data samples:   𝑥), 𝑦) = 1

– Fake data samples:   &𝑥) = 𝑔*(𝑧)), &𝑦) = 0 with:  𝑧)~𝑝(𝑧)

• For a fixed generator, can train discriminator by 
minimizing the binary cross entropy

34

𝐿 𝜙 = −
1
2𝑁

3
)/0

1

𝑦) log 𝑑2 𝑥) + 1 − 9𝑦) log(1 − 𝑑2 9𝑥) )

= −𝔼3~5!"#"(3) log 𝑑2 𝑥) − 𝔼6~5(6) log(1 − 𝑑2 𝑔* 𝑧 )

• Generator isn’t fixed à Must be trained



GAN Objective

• Consider objective as a value function of  𝜙 and 𝜃

35

V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
+ Ez⇠p(z)

h
log(1� d�(g✓(z)) )

i



GAN Objective

• Consider objective as a value function of  𝜙 and 𝜃
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– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is good, 
i.e. when generator is not producing good fakes
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i.e. when generator is not producing good fakes

– For perfect discriminator, 𝑉(𝜙, 𝜃) is low when generator is good, 
i.e. when generator confuses discriminator



GAN Objective

• Consider objective as a value function of  𝜙 and 𝜃
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V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
+ Ez⇠p(z)

h
log(1� d�(g✓(z)) )

i

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is good, 
i.e. when generator is not producing good fakes

– For perfect discriminator, 𝑉(𝜙, 𝜃) is low when generator is good, 
i.e. when generator confuses discriminator

• So our optimization goal becomes:

𝜃∗ = argmin
$
max
%

𝑉(𝜙, 𝜃)



GAN Objective

• Consider objective as a value function of  𝜙 and 𝜃

39

V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
+ Ez⇠p(z)

h
log(1� d�(g✓(z)) )

i

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is good, 
i.e. when generator is not producing good fakes

– For perfect discriminator, 𝑉(𝜙, 𝜃) is low when generator is good, 
i.e. when generator confuses discriminator

• So our optimization goal becomes:
NOTE: can prove that 
minimax solution 
corresponds to  generator 
that perfectly reproduces 
data distribution 𝜃∗ = argmin

$
max
%

𝑉(𝜙, 𝜃)



GAN Training

• Alternating Gradient descent to solve the min-max problem:

𝜃 ← 𝜃 − 𝛾∇*𝑉 𝜙, 𝜃 = 𝜃 − 𝛾
𝜕𝑉
𝜕𝑑

𝜕(𝑑2)
𝜕𝑔

𝜕𝑔*
𝜕𝜃

𝜙 ← 𝜙 − 𝛾∇2𝑉 𝜙, 𝜃 = 𝜙 − 𝛾
𝜕𝑉
𝜕𝑑

𝑑(𝑑2)
𝑑𝜙

• For each 𝜃 step, take 𝑘 steps in 𝜙 to keep discriminator near 
optimal

40

equilibrium

Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf


Examples 41

Goodfellow et. al., 2014

Radford et al, 2015

Not so good
Goodfellow 2016

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf


Challenges

• Oscillations without convergence: unlike standard loss 
minimization, alternating stochastic gradient descent has no 
guarantee of  convergence.

• Vanishing gradients: if  classifier is too good, value function 
saturates à no gradient to update generator

• Mode collapse: generator models only a small sub-population, 
concentrating on a few data distribution modes.

• Difficult to assess performance: is generated data good enough?

• Improvements in training objective (WGAN) and model design 
have significantly helped with these challenges

42

Mode collapse (Metz et al, 2016)Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture8.md


GAN Models 43

StyleGAN v2

Image-to-Image Translation with CycleGAN

Zhu et. al. 2017

Zhang et. al. 2017

Text-to-Image Synthesis with StackGAN

https://arxiv.org/abs/1703.10593


GANs for Calorimeter Energy Depositions 44

Generator
CNN

Discriminator
CNN

Random
Noise

“Real” data

Real or Fake?

PRD97, 014021 (2018)
arXiv:1705.02355
arXiv:1701.05927

arXiv:2005.05334

https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.97.014021&v=e9056fc8
https://arxiv.org/abs/2005.05334


GANs for Detector Design
• Train GAN to emulate data from simulated detector, &𝑥 = 𝑔(𝑧|𝜓)

conditioned on detector parameters 𝜓 (e.g. magnet shape below)

• Define objective 𝐶 to minimize: min
7
𝔼 83[𝐶 &𝑥 = 𝑔 𝑧 𝜓 ]

• GAN is differentiable
– Minimize with gradient descent

45NeurIPS 33, 14650-14662 (2020)

Toy Example
Magnet
Optimization

https://proceedings.neurips.cc/paper/2020/hash/a878dbebc902328b41dbf02aa87abb58-Abstract.html


Adversarial Learning for Constraining Dependence

• Want to remove dependence of  classifier on 
“nuisance” variable 𝜈, e.g. a systematic, mass, etc.

46

Classifier

Regression

Data
𝑥

Class
Prediction

Predict value of
nuisance variable 𝜈

W-tagging

Better

ATL-PHYS-PUB-2018-014

Louppe, Kagan, Cranmer, NeurIPS 30 (2017)

https://cds.cern.ch/record/2630973
https://papers.nips.cc/paper/2017/hash/48ab2f9b45957ab574cf005eb8a76760-Abstract.html


Explicit Density Estimation with Normalizing Flows

• GAN can only learn to sample from a distribution

• Is there a way to learn the explicit density 𝑝(𝑥) ?

47



Reminder: Calculus Change of  Variables

∫ 𝑓 𝑔 𝑥 "#(𝒙)
'𝒙

𝑑𝑥 = ∫ 𝑓 𝑢 𝑑𝑢 where 𝑢 = 𝑔 𝑥

Multivariate: 
∫ 𝑓 𝑔 𝒙 det "#(𝒙)

'𝒙
𝑑𝒙 = ∫ 𝑓 𝒖 𝑑𝒖 where 𝒖 = 𝑔 𝒙

48

Change of volume:
Determinant of Jacobian
of the transformation



Change of  Variables in Probability

• If  𝑓(𝑥) is the pdf  of  𝑥 and 𝑦(𝑥) is a change of  
variables, since probability should not change:

49

-
##

#$

𝑓 𝑥 𝑑𝑥 = -
$(##)

$(#$)

𝑔 𝑦 𝑑𝑦

K. Cranmer: Intro to Stats.

= -
##

#$

𝑔 𝑦(𝑥)
𝑑𝑦
𝑑𝑥 𝑑𝑥 Rewrite of r.h.s.

Thus: 𝑓(𝑥) = 𝑔 𝑦
𝑑𝑦
𝑑𝑥

Distributions are
related through
the Jacobian

𝑃 𝑥' < 𝑥 < 𝑥( = 𝑃 𝑦(𝑥') < 𝑦 < 𝑦(𝑥()

https://indico.fnal.gov/event/43762/timetable/


Example 50

Slide Credit: K. Cranmer: Intro to Stats.

https://indico.fnal.gov/event/43762/timetable/


Change of  Variables with Neural Networks 51

𝑝( 𝒙 = 𝑝) 𝒛 det "* 𝒛
'𝒛

,-
where 𝒙 = 𝜙 𝒛

• 𝑥 ≡ data we want to model
• 𝑧~𝑝(𝑥) is a chosen noise distribution, usually Gaussian

• 𝜙 is continuous, invertible, differentiable,  z = 𝜙,- 𝑥

• Want to find 𝜙(𝑧) that transforms data 𝑥 ⟺ noise 𝑧~𝑝(𝑧)



Change of  Variables with Neural Networks 52

• 𝑥 ≡ data we want to model
• 𝑧~𝑝(𝑥) is a chosen noise distribution, usually Gaussian

• 𝜙 is continuous, invertible, differentiable,  z = 𝜙,- 𝑥

• Want to find 𝜙(𝑧) that transforms data 𝑥 ⟺ noise 𝑧~𝑝(𝑧)

𝑝( 𝒙 = 𝑝) 𝒛 det "* 𝒛
'𝒛

,-
where 𝒙 = 𝜙 𝒛



Change of  Variables with Neural Networks 53

• 𝑥 ≡ data we want to model
• 𝑧~𝑝(𝑥) is a chosen noise distribution, usually Gaussian

• 𝜙 is continuous, invertible, differentiable,  z = 𝜙,- 𝑥

• Want to find 𝜙(𝑧) that transforms data 𝑥 ⟺ noise 𝑧~𝑝(𝑧)

𝜙,- 𝒙 inverse
– Input    = a sample X
– Output = a sample of  noise

𝜙 𝒛 neural network
– Input    = a sample of  noise
– Output = a sample of  X

⟺

𝑝( 𝒙 = 𝑝) 𝒛 det "* 𝒛
'𝒛

,-
where 𝒙 = 𝜙 𝒛



Density Estimation 54

Slide credit: L. Dinh

http://helper.ipam.ucla.edu/publications/mlpws1/mlpws1_16242.pdf


Generation 55

Slide credit: L. Dinh

http://helper.ipam.ucla.edu/publications/mlpws1/mlpws1_16242.pdf


Example: Real NVP (Non-Volume Preserving) Flow 56

• Data vector 𝑥 =
𝑥0
𝑥:

• Transformation: where 𝑓(⋅) and 𝑔(⋅) are neural networks

𝜙 𝑧 :
𝑥0
𝑥: = 𝜙0 𝑧 = 𝑧0

𝜙: 𝑧 = 𝑧:𝑓 𝑧0 + 𝑔(𝑧0)

𝜙;0 𝑥 :
𝑧0
𝑧: =

𝜙0;0 𝑥 = 𝑥0
𝜙:;0 𝑥 = 3!;< 3"

=(3")

• Determinant: Use fact that Jacobian is lower triangular 

det
𝜕𝜙 𝒛
𝑑𝒛

= det
1 0

𝜕𝜙#(𝑧)
𝑑𝑧$

𝑓(𝑧$)
=9𝐷𝑖𝑎𝑔

𝜕𝜙 𝒛
𝑑𝒛

= 𝑓(𝑧#)



Neural Autoregressive Models 57

Slide credit: L. Dinh

http://helper.ipam.ucla.edu/publications/mlpws1/mlpws1_16242.pdf


Composing Flows 58

Slide credit: L. Dinh

Jacobian:

Inverse:

http://helper.ipam.ucla.edu/publications/mlpws1/mlpws1_16242.pdf


Normalizing Flows 59

𝑝% 𝒙 = 𝑝& 𝒛 det
𝜕𝜙 𝒛
𝑑𝒛

'(

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf


Normalizing Flows 60

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf


Normalizing Flows 61

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

𝜙

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf


Normalizing Flows 62

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf


Normalizing Flows Training

• Learn 𝜃 with maximum likelihood

max
$
𝑝 𝑥 = max

$
𝑝& 𝜙$

'((𝑥) det
𝜕𝜙$

'( 𝒙
𝑑𝒙
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Where 𝑧 = 𝜙;0(𝑥)



Normalizing Flows Training

• Learn 𝜃 with maximum likelihood

max
$
𝑝 𝑥 = max

$
𝑝& 𝜙$

'((𝑥) det
𝜕𝜙$

'( 𝒙
𝑑𝒙
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For each data point 𝑥
• Map back to point in 𝑧-space with 𝜙%$(𝑥)
• Evaluate probability in 𝑧-space with 𝑝&(⋅)



Normalizing Flows Training

• Learn 𝜃 with maximum likelihood

max
$
𝑝 𝑥 = max

$
𝑝& 𝜙$

'((𝑥) det
𝜕𝜙$

'( 𝒙
𝑑𝒙
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For each data point 𝑥
• Map back to point in 𝑧-space with 𝜙%$(𝑥)
• Evaluate probability in 𝑧-space with 𝑝&(⋅)

Account for volume change
due to transformation  𝜙%$(𝑥)



Normalizing Flows Training

• Learn 𝜃 with maximum likelihood

max
$
𝑝 𝑥 = max

$
𝑝& 𝜙$

'((𝑥) det
𝜕𝜙$

'( 𝒙
𝑑𝒙

– Gradient descent on 𝜃
– Find transformation s.t. data is most likely

• Benefits once trained
– Can evaluate p(x) for any point X
– Can generate “new” data points
• Sample noise:  𝑧~𝑝(𝑧)
• Transform:     𝜙 𝑧 = 𝑥
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Example Normalizing flow 67

𝜙(𝑧)

𝑧(

𝑧)



Applications: Sampling in Lattice QCD 68

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf


Event Generation with Normalizing Flows 69

Example: Learning 𝒆*𝒆' → 𝟑𝒋

Slide credit: C. Krause

arXiv: 2001.05486, ML:ST
arXiv: 2001.10028, PRD

https://indico.cern.ch/event/943433/contributions/4002421/attachments/2098914/3528389/i-flow.C.Krause.pdf


Unfolding with Normalizing Flows

• Normalizing flows to model detector 𝑝(𝑦|𝑥) trained with simulation

• Normalizing flow to model unknown truth 𝑝!(𝑥)
• Maximize data likelihood 𝑝(𝑦)à Gradient descent to learn parameters 𝜃

70

Unfolding
Jet variables
in Z+jet events

𝑥~𝑝(𝑥) = input / true distribution 𝑦~𝑝(𝑦) = output / observed distribution𝑝 𝑦 𝑥 = Detector smearing

Observed distribution: 𝑝 𝑦 = ∫𝑝 𝑦 𝑥 𝑝 𝑥 𝑑𝑥 ≈ ∑'~)(')𝑝(𝑦|𝑥)

PMLR 130:2107-2115, 2021

https://proceedings.mlr.press/v130/vandegar21a.html


Conclusions

• Deep neural networks are an extremely powerful 
class of  models

• We can express our inductive bias about a system in 
terms of  model design, and can be adapted to a many 
types of  data

• Even beyond classification and regression, deep 
neural networks allow for powerful model schemes 
such as Generative adversarial Networks and 
normalizing flows that open many new possible tasks 
where Machine Learning can be applied in HEP
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• Autoencoders learn the latent space, but we don’t 
know what is the latent space distribution

• Autoencoder prescribes a deterministic 
relationship between data space and latent space 

• One set of  “meaningful degrees of  freedom” can 
only describe one data space point
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Interpolating in Latent Space 74

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


VAE 75



Reparameterization trick

• For z~𝑝$(𝑧), rewrite 𝑧 as a function of  a random 
variable 𝜖 whose distributions 𝑝(𝜖) does not 
depend on 𝜃
– Gaussian Example: 

𝑧~𝒩 𝜇, 𝜎 → 𝑧 = 𝜎 ∗ 𝜖 + 𝜇 𝑤ℎ𝑒𝑟𝑒 𝜖~𝒩(0,1)

• VAE Loss

max
,,.

𝐿 𝜃, 𝜓 = max
,,.

M
/~)(/)

log 𝑝, 𝑥 𝑧0 = 𝜖 ∗ 𝜎. 𝑥 + 𝜇. 𝑥 − log
𝑞. 𝑧0 𝑥
𝑝 𝑧0
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Latent Variable Models 77

• Observed random variable 𝑥 depends on unobserved 
latent random variable 𝑧
– Interpret 𝑧 as the causal factors for 𝑥

• Joint probability: 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

• 𝑝(𝑥|𝑧) is a stochastic generation process from 𝑧 → 𝑥

• Inference from posterior:        𝑝 𝑧 𝑥 = 7 𝑥 𝑧 7 8
7(9)

– Usually can’t compute marginal 𝑝 𝑥 = ∫ 𝑝 𝑥 𝑧 𝑝 𝑧 𝑑𝑧

𝑧 𝑥



Autoencoder: Deterministic to Probabilistic

• Consider probabilistic relationship between data and 
latent variables

𝑥, 𝑧 ~ 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

78

Prior over latent spaceDecoding data x
from latent z



From Deterministic to Probabilistic Autoencoder 79

• Autoencoding

𝑥 → 𝑞 𝑧 𝑥
:;<7=>

𝑧 → 𝑝(𝑥|𝑧)

– Choose simple prior distribution

– Encoder: Learn what latents can produced data:  𝑞(𝑧|𝑥)
– Decoder: Learn what data is produced by latent:  𝑝(𝑥|𝑧)

• Consider probabilistic relationship between data and 
latent variables

𝑥, 𝑧 ~ 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)



Autoencoder à Variational Autoencoder (VAE) 80

*

⋆

*
x



Autoencoder à Variational Autoencoder (VAE) 81

*

⋆
Sample from 
Distribution*

x

Distribution of latents
that produce data like 𝑥

Distribution of data
similar to 𝑥



Autoencoder à Variational Autoencoder (VAE) 82

*

⋆
Sample from 
Distribution*

x

Distribution of latents
that produce data like 𝑥

Distribution of data
similar to 𝑥

• Encode data 𝑥 into distribution over latents 𝑞(𝑧|𝑥)
• For any sample 𝑧 decode into distribution over data 𝑝(𝑥|𝑧)



Model Distributions with Parametrized Models

• PDF often depends on parameters 𝜃 we are interested in
– Write the density as 𝑓(𝑥|𝜃) or 𝑓(𝑥; 𝜃)

• Choose a family we know: Gaussian

• Model the parameters 𝜃 as output of  Neural Net

𝜇 𝑥 ≡ 𝑁𝑁 𝑥
𝜎(𝑥) ≡ 𝑁𝑁(𝑥)
𝑝 𝑧 𝑥 = 𝒩 𝑧; 𝜇 𝑥 , 𝜎 𝑥

log 𝑝 𝑧 𝑥 =
𝑧 − 𝜇 𝑥 *

2𝜎*(𝑥) −
1
2 log 𝜎 𝑥 − log√𝜋
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Encoding Distribution



Model Distributions with Parametrized Models

• PDF often depends on parameters 𝜃 we are interested in
– Write the density as 𝑓(𝑥|𝜃) or 𝑓(𝑥; 𝜃)

• Choose a family we know: Gaussian

• Model the parameters 𝜃 as output of  Neural Net

𝜇 𝑧 ≡ 𝑁𝑁 𝑧
𝜎(𝑧) ≡ 𝑁𝑁(𝑧)
𝑝 𝑥 𝑧 = 𝒩 𝑥; 𝜇 𝑧 , 𝜎 𝑧

log 𝑝 𝑥 𝑧 =
𝑥 − 𝜇 𝑧 *

2𝜎*(𝑧) −
1
2 log 𝜎 𝑧 − log√𝜋
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Decoding Distribution



Model Distributions with Parametrized Models

• PDF often depends on parameters 𝜃 we are interested in
– Write the density as 𝑓(𝑥|𝜃) or 𝑓(𝑥; 𝜃)

• Choose a family we know: Gaussian

• Model the parameters 𝜃 as output of  Neural Net

85

𝜇(𝑧)

𝜎(𝑧)
𝑧

𝑝(𝑥|𝑧 = 𝑧") 𝑝(𝑥|𝑧 = 𝑧%)

𝑥

𝑝(
𝑥|
𝑧)

𝜇(𝑧")

𝜎(𝑧")



VAE Loss Function

max
$,*

𝐿 𝜃, 𝜓

𝐿 𝜃, 𝜓 = H
)~Y! 𝑧 𝑥

log 𝑝Z(𝑥|𝑧) − H
)~Y! 𝑧 𝑥

log
𝑞[ 𝑧 𝑥
𝒩(𝑧; 0,1)
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• First Term
– Check compatibility 

with original data after 
encoding and decoding

• Second Term
– Check compatibility of  

encoded data with prior

– Constraint on latent 
distribution



VAE Loss Function

max
$,*

𝐿 𝜃, 𝜓

𝐿 𝜃, 𝜓 = H
)~Y! 𝑧 𝑥

log 𝑝Z(𝑥|𝑧) − H
)~Y! 𝑧 𝑥

log
𝑞[ 𝑧 𝑥
𝒩(𝑧; 0,1)
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=
1
2 4
)~Y) 𝑧 𝑥

𝑥 − 𝜇 𝑧 \

𝜎\(𝑧) − log 𝜎 𝑧

−
1
2 4
)~Y) 𝑧 𝑥

𝜎 𝑥 − 𝜇\ 𝑥 − 1 − log 𝜎(𝑥)



Probabilistic Picture 88

*

⋆

Draw sample*
x

4
)~Y) 𝑧 𝑥

log 𝑝Z(𝑥|𝑧)

4
)~Y) 𝑧 𝑥

log
𝑞[ 𝑧 𝑥
𝒩(𝑧; 0,1)



Examples 89

Higgins et al., 2017

https://fleuret.org/dlc/materials/dlc-slides-7-4-VAE.pdf


Examples 90

Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture7.md


GANS 91



GAN Training Example 92

GAN Lab Demo

https://poloclub.github.io/ganlab/


Improving GANS

• Standard GANS compare real 
and fake distributions with 
Jensen-Shannon Divergence, 
“vertically”

• Wasserstein-GAN (Arjovsky
et al, 2017) compares 
“horizontally” with 
Wasserstein-1 distance 
(a.k.a. Earth Movers distance) 

• Substantially improves 
vanishing gradient and mode 
collapse problems!

93

(Arjovsky et al, 2017)

https://arxiv.org/abs/1701.07875v3
https://arxiv.org/abs/1701.07875v3


BigGAN 94



Applications: Image-to-Image Translation with CycleGAN 95

• 𝑝(𝑧) doesn’t have to be random noise

• CycleGAN uses cycle-consistency loss in addition to GAN loss
– Translating from AàBàA should be consistent with original A



Applications: Text-to-Image Synthesis with StackGAN 96



Design Optimization 97

Before After



Normalizing Flows 98



Normalizing Flows 99

𝑥 𝑧
𝜙%$(𝑥)

𝜙(𝑧)

𝑝((𝑥) 𝑝)(𝑧)
𝑝&(𝜙%$ 𝑥 ) det

𝜕𝜙%$ 𝒙
𝑑𝒙

𝑝& 𝑧 det
𝜕𝜙 𝒛
𝑑𝒛

%$


