
Introduction to Machine Learning:
Lecture 3

Michael Kagan

SLAC

Hadron Collider Physics Summer School
August 25, 2021

Outline

• Lecture 1
– Brief introduction to probability and statistics
– Introduction to Machine Learning fundamentals
– Linear Models

• Lecture 2
– Neural Networks
– Deep Neural Networks
– Convolutional, Recurrent, and Graph Neural Networks

• Lecture 3
– Unsupervised Learning
– Autoencoders
– Generative Adversarial Networks and Normalizing Flows

2

Beyond Regression and Classification

• Not all tasks are predicting a label from features
– Data synthesis / simulation
– Density estimation
– Anomaly detection
– Denoising, super resolution
– Data compression
– …

• Requires Unsupervised Learning

• Often framed as modeling the lower dimensional
“meaningful degrees of freedom” that describe the data

3

Modeling Data and Meaningful Degrees of Freedom 4

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Modeling Data and Meaningful Degrees of Freedom 5

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Modeling Data and Meaningful Degrees of Freedom 6

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Modeling Data and Meaningful Degrees of Freedom 7

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Autoencoders

8

How to Find Meaningful Representations

• Dimensionality Reduction / Compression
– Compress the data to a latent space with smaller

number of dimensions

– Latent space must encode and retain the important
information about the data

– One way to frame “retaining important information”:
We can reconstruct original data from latent space

– Can we learn this compression and latent space?

9

Autoencoders 10

• Autoencoders map a space to itself through a compression

𝑥 = Data z = Latent Space

𝑥 → 𝑧 → &𝑥
Full transformation should be close to the identity on the data

Autoencoders 11

– Encoder: Map from to a lower dimensional latent space
• Neural network 𝑓! 𝑥 with parameters 𝜃

𝑥 → 𝑓 𝑥 = 𝑧

• Autoencoders map a space to itself through a compression

𝑥 = Data z = Latent Space

𝑥 → 𝑧 → &𝑥
Full transformation should be close to the identity on the data

Autoencoders 12

– Encoder: Map from to a lower dimensional latent space
• Neural network 𝑓! 𝑥 with parameters 𝜃

– Decoder: Map from latent space back to data space
• Neural network 𝑔" 𝑧 with parameters 𝜓

𝑥 → 𝑓 𝑥 = 𝑧

𝑧 → 𝑔 𝑧 = '𝑥

• Autoencoders map a space to itself through a compression

𝑥 = Data z = Latent Space

𝑥 → 𝑧 → &𝑥
Full transformation should be close to the identity on the data

Autoencoders 13

– Encoder: Map from to a lower dimensional latent space
• Neural network 𝑓! 𝑥 with parameters 𝜃

– Decoder: Map from latent space back to data space
• Neural network 𝑔" 𝑧 with parameters 𝜓

𝑥 → 𝑓 𝑥 = 𝑧

𝑧 → 𝑔 𝑧 = '𝑥

• Autoencoders map a space to itself through a compression

𝑥 = Data z = Latent Space

𝑥 → 𝑧 → &𝑥
Full transformation should be close to the identity on the data

We must:
• Choose latent dimension D
• Learn mapping 𝑓(⋅) and 𝑔(⋅)

Autoencoder Loss

• Loss: mean reconstruction loss (MSE) between data and
encoded-decoded data

𝐿(𝜃, 𝜓) =
1
𝑁*

'

𝑥' − 𝑔(𝑓) 𝑥'
*

• Minimize this loss over parameters of encoder (𝜃)
and decoder (𝜓).

14

Autoencoder Loss

• Loss: mean reconstruction loss (MSE) between data and
encoded-decoded data

𝐿(𝜃, 𝜓) =
1
𝑁*

'

𝑥' − 𝑔(𝑓) 𝑥'
*

• Minimize this loss over parameters of encoder (𝜃)
and decoder (𝜓).

15

NOTE: if 𝑓! 𝑥 and 𝑔" 𝑧 are linear, optimal solution given by Principle Components Analysis

Autoencoder Mappings

If the latent space is of lower dimension:

autoencoder must capture a “good” parametrization,
and in particular dependencies between components

16

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Deep Autoencoder 17

𝑥 𝑧 (𝑥𝑓(") 𝑔($)

• When 𝑓) and 𝑔(are multiple neural network layers,
can learn complex mappings between 𝑥 and 𝑧
– 𝑓! and 𝑔" can be Fully Connected, CNNs, RNNs, etc.

– Choice of network structure will depend on data

𝑓(%) 𝑓($) 𝑔(%) 𝑔(")

𝑓! 𝑔"

Deep Convolutional Autoencoder 18

Fleuret, Deep Learning Course

𝑓! and 𝑔" are each
5 convolutional layers

https://fleuret.org/dlc/

Denoising Autoencoders

• Learn a mapping from corrupted data space !𝒳
back to original data space

–Mapping 𝜙!)𝒳 = 𝒳
– 𝜙! will be a neural network with parameters 𝑤

• Loss:

L =
1
𝑁
'
!

𝑥! − 𝜙"(𝑥! + 𝜖!)

19

Perturbation, e.g. Gaussian noise

Denoising Autoencoders Examples 20

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Autoencoders for Anomaly Detection in HEP 21

Slide credit: G. Kasieczka, Deep Learning in HEP

if poorly reconstructed by autoencoder

https://indico.fnal.gov/event/43762/contributions/192701/attachments/133064/163908/DeepLearning_Fermilab_Summerschool2020.pdf

Can We Generate Data with Decoder? 22

• Can we sample in latent space
and decode to generate data?

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Can We Generate Data with Decoder? 23

• Can we sample in latent space
and decode to generate data?

• What distribution to sample
from in latent space?
– Try Gaussian with mean and

variance from data

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Can We Generate Data with Decoder?

• Doesn’t work! Don’t know the right latent space density
– This can be done with a Variational Autoencoder (See Backup)

24

• Can we sample in latent space
and decode to generate data?

• What distribution to sample
from in latent space?
– Try Gaussian with mean and

variance from data

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Generative Models 25

• Generative models aim to:
– Learn distribution 𝑝(𝑥) that models PDF of the data
– Draw samples of plausible data points

• Explicit Models
– Can evaluate the density 𝑝(𝑥) of a data point x

• Implicit Models
– Can only sample from 𝑝(𝑥), but not evaluate density

Generative Adversarial Networks 26

Generative Modeling as a Two Player Game

• Formulate generative modeling task as a two
player game

• One player tries to output data that looks as real
as possible

• Another player tries to compare real and fake data

• In this case we need:
– A generator that can produce samples
– A measure of not too far from the real data

27

Generative Adversarial Network (GAN)

• Generator network 𝒈𝜽(𝒛) with parameters 𝜃
– Map sample from known 𝑝(𝑧) to sample in data space

𝑥 = 𝑔! 𝑧 𝑧~𝑝(𝑧)

– We don’t know what the learned distribution 𝑝!(𝑥) is,
but we can sample from it à Implicit Model

28Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Generative Adversarial Network (GAN)

• Generator network 𝒈𝜽(𝒛) with parameters 𝜃
– Map sample from known 𝑝(𝑧) to sample in data space

𝑥 = 𝑔! 𝑧 𝑧~𝑝(𝑧)

– We don’t know what the learned distribution 𝑝!(𝑥) is,
but we can sample from it à Implicit Model

• Discriminator Network 𝒅𝝓(𝒙) with parameters 𝜙
– Classifier trained to distinguish between real and fake data

– Classifier is learning to predict 𝑝 𝑖𝑛𝑝𝑢𝑡 = 𝑟𝑒𝑎𝑙 𝑥)

– Classifier is our measure of not too far from the real data

29Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

GAN Setup

• Generator goal:
– Produce fake data to trick discriminator to classify as real

• Discriminator goal:
– Minimizes miss-classification of data as real or fake

• Adversarial setup: two networks w/ opposing objectives

30

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

GAN Objective

• Data
– Real data samples: 𝑥), 𝑦) = 1

– Fake data samples: &𝑥) = 𝑔*(𝑧)), &𝑦) = 0 with: 𝑧)~𝑝(𝑧)

31

Usually Gaussian 𝒩(0,1)

GAN Objective

• Data
– Real data samples: 𝑥), 𝑦) = 1

– Fake data samples: &𝑥) = 𝑔*(𝑧)), &𝑦) = 0 with: 𝑧)~𝑝(𝑧)

• For a fixed generator, can train discriminator by
minimizing the binary cross entropy

32

𝐿 𝜙 = −
1
2𝑁

3
)/0

1

𝑦) log 𝑑2 𝑥) + 1 − 9𝑦) log(1 − 𝑑2 9𝑥))

GAN Objective

• Data
– Real data samples: 𝑥), 𝑦) = 1

– Fake data samples: &𝑥) = 𝑔*(𝑧)), &𝑦) = 0 with: 𝑧)~𝑝(𝑧)

• For a fixed generator, can train discriminator by
minimizing the binary cross entropy

33

𝐿 𝜙 = −
1
2𝑁

3
)/0

1

𝑦) log 𝑑2 𝑥) + 1 − 9𝑦) log(1 − 𝑑2 9𝑥))

= −𝔼3~5!"#"(3) log 𝑑2 𝑥) − 𝔼6~5(6) log(1 − 𝑑2 𝑔* 𝑧)

GAN Objective

• Data
– Real data samples: 𝑥), 𝑦) = 1

– Fake data samples: &𝑥) = 𝑔*(𝑧)), &𝑦) = 0 with: 𝑧)~𝑝(𝑧)

• For a fixed generator, can train discriminator by
minimizing the binary cross entropy

34

𝐿 𝜙 = −
1
2𝑁

3
)/0

1

𝑦) log 𝑑2 𝑥) + 1 − 9𝑦) log(1 − 𝑑2 9𝑥))

= −𝔼3~5!"#"(3) log 𝑑2 𝑥) − 𝔼6~5(6) log(1 − 𝑑2 𝑔* 𝑧)

• Generator isn’t fixed à Must be trained

GAN Objective

• Consider objective as a value function of 𝜙 and 𝜃

35

V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
+ Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

GAN Objective

• Consider objective as a value function of 𝜙 and 𝜃

36

V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
+ Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is good,
i.e. when generator is not producing good fakes

GAN Objective

• Consider objective as a value function of 𝜙 and 𝜃

37

V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
+ Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is good,
i.e. when generator is not producing good fakes

– For perfect discriminator, 𝑉(𝜙, 𝜃) is low when generator is good,
i.e. when generator confuses discriminator

GAN Objective

• Consider objective as a value function of 𝜙 and 𝜃

38

V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
+ Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is good,
i.e. when generator is not producing good fakes

– For perfect discriminator, 𝑉(𝜙, 𝜃) is low when generator is good,
i.e. when generator confuses discriminator

• So our optimization goal becomes:

𝜃∗ = argmin
$
max
%

𝑉(𝜙, 𝜃)

GAN Objective

• Consider objective as a value function of 𝜙 and 𝜃

39

V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
+ Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is good,
i.e. when generator is not producing good fakes

– For perfect discriminator, 𝑉(𝜙, 𝜃) is low when generator is good,
i.e. when generator confuses discriminator

• So our optimization goal becomes:
NOTE: can prove that
minimax solution
corresponds to generator
that perfectly reproduces
data distribution 𝜃∗ = argmin

$
max
%

𝑉(𝜙, 𝜃)

GAN Training

• Alternating Gradient descent to solve the min-max problem:

𝜃 ← 𝜃 − 𝛾∇*𝑉 𝜙, 𝜃 = 𝜃 − 𝛾
𝜕𝑉
𝜕𝑑

𝜕(𝑑2)
𝜕𝑔

𝜕𝑔*
𝜕𝜃

𝜙 ← 𝜙 − 𝛾∇2𝑉 𝜙, 𝜃 = 𝜙 − 𝛾
𝜕𝑉
𝜕𝑑

𝑑(𝑑2)
𝑑𝜙

• For each 𝜃 step, take 𝑘 steps in 𝜙 to keep discriminator near
optimal

40

equilibrium

Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Examples 41

Goodfellow et. al., 2014

Radford et al, 2015

Not so good
Goodfellow 2016

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Challenges

• Oscillations without convergence: unlike standard loss
minimization, alternating stochastic gradient descent has no
guarantee of convergence.

• Vanishing gradients: if classifier is too good, value function
saturates à no gradient to update generator

• Mode collapse: generator models only a small sub-population,
concentrating on a few data distribution modes.

• Difficult to assess performance: is generated data good enough?

• Improvements in training objective (WGAN) and model design
have significantly helped with these challenges

42

Mode collapse (Metz et al, 2016)Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture8.md

GAN Models 43

StyleGAN v2

Image-to-Image Translation with CycleGAN

Zhu et. al. 2017

Zhang et. al. 2017

Text-to-Image Synthesis with StackGAN

https://arxiv.org/abs/1703.10593

GANs for Calorimeter Energy Depositions 44

Generator
CNN

Discriminator
CNN

Random
Noise

“Real” data

Real or Fake?

PRD97, 014021 (2018)
arXiv:1705.02355
arXiv:1701.05927

arXiv:2005.05334

https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.97.014021&v=e9056fc8
https://arxiv.org/abs/2005.05334

GANs for Detector Design
• Train GAN to emulate data from simulated detector, &𝑥 = 𝑔(𝑧|𝜓)

conditioned on detector parameters 𝜓 (e.g. magnet shape below)

• Define objective 𝐶 to minimize: min
7
𝔼 83[𝐶 &𝑥 = 𝑔 𝑧 𝜓]

• GAN is differentiable
– Minimize with gradient descent

45NeurIPS 33, 14650-14662 (2020)

Toy Example
Magnet
Optimization

https://proceedings.neurips.cc/paper/2020/hash/a878dbebc902328b41dbf02aa87abb58-Abstract.html

Adversarial Learning for Constraining Dependence

• Want to remove dependence of classifier on
“nuisance” variable 𝜈, e.g. a systematic, mass, etc.

46

Classifier

Regression

Data
𝑥

Class
Prediction

Predict value of
nuisance variable 𝜈

W-tagging

Better

ATL-PHYS-PUB-2018-014

Louppe, Kagan, Cranmer, NeurIPS 30 (2017)

https://cds.cern.ch/record/2630973
https://papers.nips.cc/paper/2017/hash/48ab2f9b45957ab574cf005eb8a76760-Abstract.html

Explicit Density Estimation with Normalizing Flows

• GAN can only learn to sample from a distribution

• Is there a way to learn the explicit density 𝑝(𝑥) ?

47

Reminder: Calculus Change of Variables

∫ 𝑓 𝑔 𝑥 "#(𝒙)
'𝒙

𝑑𝑥 = ∫ 𝑓 𝑢 𝑑𝑢 where 𝑢 = 𝑔 𝑥

Multivariate:
∫ 𝑓 𝑔 𝒙 det "#(𝒙)

'𝒙
𝑑𝒙 = ∫ 𝑓 𝒖 𝑑𝒖 where 𝒖 = 𝑔 𝒙

48

Change of volume:
Determinant of Jacobian
of the transformation

Change of Variables in Probability

• If 𝑓(𝑥) is the pdf of 𝑥 and 𝑦(𝑥) is a change of
variables, since probability should not change:

49

-
##

#$

𝑓 𝑥 𝑑𝑥 = -
$(##)

$(#$)

𝑔 𝑦 𝑑𝑦

K. Cranmer: Intro to Stats.

= -
##

#$

𝑔 𝑦(𝑥)
𝑑𝑦
𝑑𝑥 𝑑𝑥 Rewrite of r.h.s.

Thus: 𝑓(𝑥) = 𝑔 𝑦
𝑑𝑦
𝑑𝑥

Distributions are
related through
the Jacobian

𝑃 𝑥' < 𝑥 < 𝑥(= 𝑃 𝑦(𝑥') < 𝑦 < 𝑦(𝑥()

https://indico.fnal.gov/event/43762/timetable/

Example 50

Slide Credit: K. Cranmer: Intro to Stats.

https://indico.fnal.gov/event/43762/timetable/

Change of Variables with Neural Networks 51

𝑝(𝒙 = 𝑝) 𝒛 det "* 𝒛
'𝒛

,-
where 𝒙 = 𝜙 𝒛

• 𝑥 ≡ data we want to model
• 𝑧~𝑝(𝑥) is a chosen noise distribution, usually Gaussian

• 𝜙 is continuous, invertible, differentiable, z = 𝜙,- 𝑥

• Want to find 𝜙(𝑧) that transforms data 𝑥 ⟺ noise 𝑧~𝑝(𝑧)

Change of Variables with Neural Networks 52

• 𝑥 ≡ data we want to model
• 𝑧~𝑝(𝑥) is a chosen noise distribution, usually Gaussian

• 𝜙 is continuous, invertible, differentiable, z = 𝜙,- 𝑥

• Want to find 𝜙(𝑧) that transforms data 𝑥 ⟺ noise 𝑧~𝑝(𝑧)

𝑝(𝒙 = 𝑝) 𝒛 det "* 𝒛
'𝒛

,-
where 𝒙 = 𝜙 𝒛

Change of Variables with Neural Networks 53

• 𝑥 ≡ data we want to model
• 𝑧~𝑝(𝑥) is a chosen noise distribution, usually Gaussian

• 𝜙 is continuous, invertible, differentiable, z = 𝜙,- 𝑥

• Want to find 𝜙(𝑧) that transforms data 𝑥 ⟺ noise 𝑧~𝑝(𝑧)

𝜙,- 𝒙 inverse
– Input = a sample X
– Output = a sample of noise

𝜙 𝒛 neural network
– Input = a sample of noise
– Output = a sample of X

⟺

𝑝(𝒙 = 𝑝) 𝒛 det "* 𝒛
'𝒛

,-
where 𝒙 = 𝜙 𝒛

Density Estimation 54

Slide credit: L. Dinh

http://helper.ipam.ucla.edu/publications/mlpws1/mlpws1_16242.pdf

Generation 55

Slide credit: L. Dinh

http://helper.ipam.ucla.edu/publications/mlpws1/mlpws1_16242.pdf

Example: Real NVP (Non-Volume Preserving) Flow 56

• Data vector 𝑥 =
𝑥0
𝑥:

• Transformation: where 𝑓(⋅) and 𝑔(⋅) are neural networks

𝜙 𝑧 :
𝑥0
𝑥: = 𝜙0 𝑧 = 𝑧0

𝜙: 𝑧 = 𝑧:𝑓 𝑧0 + 𝑔(𝑧0)

𝜙;0 𝑥 :
𝑧0
𝑧: =

𝜙0;0 𝑥 = 𝑥0
𝜙:;0 𝑥 = 3!;< 3"

=(3")

• Determinant: Use fact that Jacobian is lower triangular

det
𝜕𝜙 𝒛
𝑑𝒛

= det
1 0

𝜕𝜙#(𝑧)
𝑑𝑧$

𝑓(𝑧$)
=9𝐷𝑖𝑎𝑔

𝜕𝜙 𝒛
𝑑𝒛

= 𝑓(𝑧#)

Neural Autoregressive Models 57

Slide credit: L. Dinh

http://helper.ipam.ucla.edu/publications/mlpws1/mlpws1_16242.pdf

Composing Flows 58

Slide credit: L. Dinh

Jacobian:

Inverse:

http://helper.ipam.ucla.edu/publications/mlpws1/mlpws1_16242.pdf

Normalizing Flows 59

𝑝% 𝒙 = 𝑝& 𝒛 det
𝜕𝜙 𝒛
𝑑𝒛

'(

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows 60

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows 61

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

𝜙

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows 62

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows Training

• Learn 𝜃 with maximum likelihood

max
$
𝑝 𝑥 = max

$
𝑝& 𝜙$

'((𝑥) det
𝜕𝜙$

'(𝒙
𝑑𝒙

63

Where 𝑧 = 𝜙;0(𝑥)

Normalizing Flows Training

• Learn 𝜃 with maximum likelihood

max
$
𝑝 𝑥 = max

$
𝑝& 𝜙$

'((𝑥) det
𝜕𝜙$

'(𝒙
𝑑𝒙

64

For each data point 𝑥
• Map back to point in 𝑧-space with 𝜙%$(𝑥)
• Evaluate probability in 𝑧-space with 𝑝&(⋅)

Normalizing Flows Training

• Learn 𝜃 with maximum likelihood

max
$
𝑝 𝑥 = max

$
𝑝& 𝜙$

'((𝑥) det
𝜕𝜙$

'(𝒙
𝑑𝒙

65

For each data point 𝑥
• Map back to point in 𝑧-space with 𝜙%$(𝑥)
• Evaluate probability in 𝑧-space with 𝑝&(⋅)

Account for volume change
due to transformation 𝜙%$(𝑥)

Normalizing Flows Training

• Learn 𝜃 with maximum likelihood

max
$
𝑝 𝑥 = max

$
𝑝& 𝜙$

'((𝑥) det
𝜕𝜙$

'(𝒙
𝑑𝒙

– Gradient descent on 𝜃
– Find transformation s.t. data is most likely

• Benefits once trained
– Can evaluate p(x) for any point X
– Can generate “new” data points
• Sample noise: 𝑧~𝑝(𝑧)
• Transform: 𝜙 𝑧 = 𝑥

66

Example Normalizing flow 67

𝜙(𝑧)

𝑧(

𝑧)

Applications: Sampling in Lattice QCD 68

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Event Generation with Normalizing Flows 69

Example: Learning 𝒆*𝒆' → 𝟑𝒋

Slide credit: C. Krause

arXiv: 2001.05486, ML:ST
arXiv: 2001.10028, PRD

https://indico.cern.ch/event/943433/contributions/4002421/attachments/2098914/3528389/i-flow.C.Krause.pdf

Unfolding with Normalizing Flows

• Normalizing flows to model detector 𝑝(𝑦|𝑥) trained with simulation

• Normalizing flow to model unknown truth 𝑝!(𝑥)
• Maximize data likelihood 𝑝(𝑦)à Gradient descent to learn parameters 𝜃

70

Unfolding
Jet variables
in Z+jet events

𝑥~𝑝(𝑥) = input / true distribution 𝑦~𝑝(𝑦) = output / observed distribution𝑝 𝑦 𝑥 = Detector smearing

Observed distribution: 𝑝 𝑦 = ∫𝑝 𝑦 𝑥 𝑝 𝑥 𝑑𝑥 ≈ ∑'~)(')𝑝(𝑦|𝑥)

PMLR 130:2107-2115, 2021

https://proceedings.mlr.press/v130/vandegar21a.html

Conclusions

• Deep neural networks are an extremely powerful
class of models

• We can express our inductive bias about a system in
terms of model design, and can be adapted to a many
types of data

• Even beyond classification and regression, deep
neural networks allow for powerful model schemes
such as Generative adversarial Networks and
normalizing flows that open many new possible tasks
where Machine Learning can be applied in HEP

71

72

• Autoencoders learn the latent space, but we don’t
know what is the latent space distribution

• Autoencoder prescribes a deterministic
relationship between data space and latent space

• One set of “meaningful degrees of freedom” can
only describe one data space point

73

Interpolating in Latent Space 74

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

VAE 75

Reparameterization trick

• For z~𝑝$(𝑧), rewrite 𝑧 as a function of a random
variable 𝜖 whose distributions 𝑝(𝜖) does not
depend on 𝜃
– Gaussian Example:

𝑧~𝒩 𝜇, 𝜎 → 𝑧 = 𝜎 ∗ 𝜖 + 𝜇 𝑤ℎ𝑒𝑟𝑒 𝜖~𝒩(0,1)

• VAE Loss

max
,,.

𝐿 𝜃, 𝜓 = max
,,.

M
/~)(/)

log 𝑝, 𝑥 𝑧0 = 𝜖 ∗ 𝜎. 𝑥 + 𝜇. 𝑥 − log
𝑞. 𝑧0 𝑥
𝑝 𝑧0

76

Latent Variable Models 77

• Observed random variable 𝑥 depends on unobserved
latent random variable 𝑧
– Interpret 𝑧 as the causal factors for 𝑥

• Joint probability: 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

• 𝑝(𝑥|𝑧) is a stochastic generation process from 𝑧 → 𝑥

• Inference from posterior: 𝑝 𝑧 𝑥 = 7 𝑥 𝑧 7 8
7(9)

– Usually can’t compute marginal 𝑝 𝑥 = ∫ 𝑝 𝑥 𝑧 𝑝 𝑧 𝑑𝑧

𝑧 𝑥

Autoencoder: Deterministic to Probabilistic

• Consider probabilistic relationship between data and
latent variables

𝑥, 𝑧 ~ 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

78

Prior over latent spaceDecoding data x
from latent z

From Deterministic to Probabilistic Autoencoder 79

• Autoencoding

𝑥 → 𝑞 𝑧 𝑥
:;<7=>

𝑧 → 𝑝(𝑥|𝑧)

– Choose simple prior distribution

– Encoder: Learn what latents can produced data: 𝑞(𝑧|𝑥)
– Decoder: Learn what data is produced by latent: 𝑝(𝑥|𝑧)

• Consider probabilistic relationship between data and
latent variables

𝑥, 𝑧 ~ 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

Autoencoder à Variational Autoencoder (VAE) 80

*

⋆

*
x

Autoencoder à Variational Autoencoder (VAE) 81

*

⋆
Sample from
Distribution*

x

Distribution of latents
that produce data like 𝑥

Distribution of data
similar to 𝑥

Autoencoder à Variational Autoencoder (VAE) 82

*

⋆
Sample from
Distribution*

x

Distribution of latents
that produce data like 𝑥

Distribution of data
similar to 𝑥

• Encode data 𝑥 into distribution over latents 𝑞(𝑧|𝑥)
• For any sample 𝑧 decode into distribution over data 𝑝(𝑥|𝑧)

Model Distributions with Parametrized Models

• PDF often depends on parameters 𝜃 we are interested in
– Write the density as 𝑓(𝑥|𝜃) or 𝑓(𝑥; 𝜃)

• Choose a family we know: Gaussian

• Model the parameters 𝜃 as output of Neural Net

𝜇 𝑥 ≡ 𝑁𝑁 𝑥
𝜎(𝑥) ≡ 𝑁𝑁(𝑥)
𝑝 𝑧 𝑥 = 𝒩 𝑧; 𝜇 𝑥 , 𝜎 𝑥

log 𝑝 𝑧 𝑥 =
𝑧 − 𝜇 𝑥 *

2𝜎*(𝑥) −
1
2 log 𝜎 𝑥 − log√𝜋

83

Encoding Distribution

Model Distributions with Parametrized Models

• PDF often depends on parameters 𝜃 we are interested in
– Write the density as 𝑓(𝑥|𝜃) or 𝑓(𝑥; 𝜃)

• Choose a family we know: Gaussian

• Model the parameters 𝜃 as output of Neural Net

𝜇 𝑧 ≡ 𝑁𝑁 𝑧
𝜎(𝑧) ≡ 𝑁𝑁(𝑧)
𝑝 𝑥 𝑧 = 𝒩 𝑥; 𝜇 𝑧 , 𝜎 𝑧

log 𝑝 𝑥 𝑧 =
𝑥 − 𝜇 𝑧 *

2𝜎*(𝑧) −
1
2 log 𝜎 𝑧 − log√𝜋

84

Decoding Distribution

Model Distributions with Parametrized Models

• PDF often depends on parameters 𝜃 we are interested in
– Write the density as 𝑓(𝑥|𝜃) or 𝑓(𝑥; 𝜃)

• Choose a family we know: Gaussian

• Model the parameters 𝜃 as output of Neural Net

85

𝜇(𝑧)

𝜎(𝑧)
𝑧

𝑝(𝑥|𝑧 = 𝑧") 𝑝(𝑥|𝑧 = 𝑧%)

𝑥

𝑝(
𝑥|
𝑧)

𝜇(𝑧")

𝜎(𝑧")

VAE Loss Function

max
$,*

𝐿 𝜃, 𝜓

𝐿 𝜃, 𝜓 = H
)~Y! 𝑧 𝑥

log 𝑝Z(𝑥|𝑧) − H
)~Y! 𝑧 𝑥

log
𝑞[𝑧 𝑥
𝒩(𝑧; 0,1)

86

• First Term
– Check compatibility

with original data after
encoding and decoding

• Second Term
– Check compatibility of

encoded data with prior

– Constraint on latent
distribution

VAE Loss Function

max
$,*

𝐿 𝜃, 𝜓

𝐿 𝜃, 𝜓 = H
)~Y! 𝑧 𝑥

log 𝑝Z(𝑥|𝑧) − H
)~Y! 𝑧 𝑥

log
𝑞[𝑧 𝑥
𝒩(𝑧; 0,1)

87

=
1
2 4
)~Y) 𝑧 𝑥

𝑥 − 𝜇 𝑧 \

𝜎\(𝑧) − log 𝜎 𝑧

−
1
2 4
)~Y) 𝑧 𝑥

𝜎 𝑥 − 𝜇\ 𝑥 − 1 − log 𝜎(𝑥)

Probabilistic Picture 88

*

⋆

Draw sample*
x

4
)~Y) 𝑧 𝑥

log 𝑝Z(𝑥|𝑧)

4
)~Y) 𝑧 𝑥

log
𝑞[𝑧 𝑥
𝒩(𝑧; 0,1)

Examples 89

Higgins et al., 2017

https://fleuret.org/dlc/materials/dlc-slides-7-4-VAE.pdf

Examples 90

Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture7.md

GANS 91

GAN Training Example 92

GAN Lab Demo

https://poloclub.github.io/ganlab/

Improving GANS

• Standard GANS compare real
and fake distributions with
Jensen-Shannon Divergence,
“vertically”

• Wasserstein-GAN (Arjovsky
et al, 2017) compares
“horizontally” with
Wasserstein-1 distance
(a.k.a. Earth Movers distance)

• Substantially improves
vanishing gradient and mode
collapse problems!

93

(Arjovsky et al, 2017)

https://arxiv.org/abs/1701.07875v3
https://arxiv.org/abs/1701.07875v3

BigGAN 94

Applications: Image-to-Image Translation with CycleGAN 95

• 𝑝(𝑧) doesn’t have to be random noise

• CycleGAN uses cycle-consistency loss in addition to GAN loss
– Translating from AàBàA should be consistent with original A

Applications: Text-to-Image Synthesis with StackGAN 96

Design Optimization 97

Before After

Normalizing Flows 98

Normalizing Flows 99

𝑥 𝑧
𝜙%$(𝑥)

𝜙(𝑧)

𝑝((𝑥) 𝑝)(𝑧)
𝑝&(𝜙%$ 𝑥) det

𝜕𝜙%$ 𝒙
𝑑𝒙

𝑝& 𝑧 det
𝜕𝜙 𝒛
𝑑𝒛

%$

