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• We talked about picking a model or signature 

• Parameters and assumptions 

• And a bit about trigger and reconstruction 

• Now we move on to designing your search
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https://sensorstechforum.com/mr-robot-season-2-hacks-exploits-darlene-massacre-trojan/


What kind of search is it?
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• Once you’re pretty sure your signal will be recorded and 
reconstructed, it’s time to decide how you’re going to look for it! 

• Let’s start with an “easy” one: a bump hunt

https://twiki.cern.ch/twiki/bin/view/CMSPublic/HLTDiMuon2017and2018


Hunting Bumps
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• There are only a few questions when designing a bump hunt: 

• In what observable is the bump? E.g. invariant mass of what? 

• How peaked is the bump (the narrower the better)? 

• Do you need any other cuts to make the bump show up? 

• You’re almost immediately ready for statistical analysis!

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2019-03/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2018-08/


Hunting Bumps
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• Generally, bump hunts are easier than many other search setups 

• There is a lot of good technology to use 

• Fit functions, statistical tools, etc 

• If you can turn your search into a bump hunt, do it! 

• Conceptually, this is where the “R-Jigsaw variables” came from

https://arxiv.org/abs/1705.10733
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-23/
http://cms-results.web.cern.ch/cms-results/public-results/publications/SUS-18-007/index.html


Basic Steps for Hunting Bumps
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• Do you have one dominant background? If so, use a function! 

• Nature is usually (mostly) smooth, so your background should be too 

• Pick a window to look in based on your signal width 

• The distribution outside the window is what you’ll estimate that 
background with! 

• Slide the window along the distribution and look for signal!

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2019-03/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2018-08/


Bump Hunts: Hard Mode
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• If you have a lot of background, expect to spend time estimating 
biases in your background estimate (“spurious signal”)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2019-14/


Bump Hunts: Hard Mode
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• If you have bumpy backgrounds, expect to spend a lot of time 
understanding those other structures (and setting up functions)

https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/LHCb-PAPER-2018-008.html


Bump Hunts: Hard Mode
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• If your signal appears in several places, remember it may not 
always look the same!

Calorimeter measurement Tracker measurement

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2018-08/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2018-08/


Bump Hunts: Hard Mode
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• If you have many different backgrounds, then you might just be 
giving up on the function entirely… more on that in a few min!

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-16/


Into the Tail
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• At the highest end of the observable spectrum, a bump hunt 
becomes a tail search (also often known as cut-and-count)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2018-30/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2015-09/


Into the Tail
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• The simplest version of a tail search is a “cut and count” search 

• We did a lot of these in the early days of the LHC 

• These are super common, particularly for weird searches 

• If your signal is reasonably easy to isolate and doesn’t “bump”, this is 
the way to go!

https://arxiv.org/pdf/1102.5290.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-33/


Tails with Fits
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• For this particular example, just add up the jet masses: 

• Fit some of the data, check for signal 

• Add more data, fit higher masses, check for more signal 

• Repeat until you’re done

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2015-09/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2015-09/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2015-09/


Tails can be tricky
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• In tails, it’s common to have a mix of events that can’t be fit with 
a single function 

• Fitting many functions becomes complicated: what forms do you 
use? How do they relate? 

• The solution is clear: use Monte Carlo simulation! (with validation)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2010-13/


With apologies to Rikkert
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• The problem is that sometimes Monte Carlo simulation is terrible 

• To be fair, we often search regions of phase space that haven’t yet been 
measured (in fact that’s kinda the point) 

• So what can we do to get a good enough background estimate 
to find new physics without waiting years for higher-order 
predictions, tuning, etc?

Side note: it’s rare to find plots 
showing strong disagreement in 
LHC search papers. We tend to 
bury this more than we should.

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2016-10/


Enter the Fit

69

• Binned fits are the bread-and-butter of a large fraction of the 
LHC search program 

• There are quite a few subtleties to them, so let’s talk about them 
for a moment

Slice your signal 
region up…

http://www.apple.com


Binning and Fitting: History
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• In the dawn of time, some searches were done with “control 
regions” and “a signal region” (SR) 

• Each “control region” (CR) was to control a background (often 
just the normalization) 

• These were made as pure in the background as possible 

• Some Monte Carlo was used to extrapolate from the control 
region to the signal region
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• In the dawn of time, some searches were done with “control 
regions” and “a signal region” (SR) 

• Each “control region” (CR) was to control a background (often 
just the normalization) 

• These were made as pure in the background as possible 

• Some Monte Carlo was used to extrapolate from the control 
region to the signal region

Binning and Fitting: History
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Reality bites
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• Of course, not all backgrounds can be “controlled” in that way, 
so we often have extras that have to be estimated purely with 
Monte Carlo simulation
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Reality bites
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• Of course, not all backgrounds can be “controlled” in that way, 
so we often have extras that have to be estimated purely with 
Monte Carlo simulation 

• And, of course, not all CRs are actually pure in their background 

• We can no longer pretend that each CR “simply” normalizes a single 
background – we have to fit them all together!
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Check my math!
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• This is all complicated, so kinematically “between” the CRs and 
the SR, let’s add some “validation regions” (VRs) to check that 
our background estimates did the right thing 

• We fit in the CRs, check agreement in the VRs, and then look for 
new physics in the SRs 

• Normally: many events in the CRs (>100s), fewer in the VRs, and 
few in the SRs (<10 – old rule of thumb is you want about 3)
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Extrapolation
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• There’s a trade off in building all the CRs and SRs: 

• Make them larger (more events) – better “control” of the background, 
higher precision on the normalization factor, but very large uncertainties 
on the extrapolation from the CR to the SR 

• Move them closer to the signal region (fewer events) – larger 
normalization uncertainty, smaller extrapolation uncertainty 

• Which is better is not obvious and depends on the search!
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What are CRs and SRs
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• Let’s take some long distribution in 
an observable like this one

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-20-004/


What are CRs and SRs
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• Let’s take some long distribution in 
an observable like this one 

• Simplest thing is to just chop up the 
distribution in an easy way 

• I can decide what a CR is based on 
some previous search (where I know 
there’s no signal)

CR VR SR

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-20-004/


What are CRs and SRs
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• Let’s take some long distribution in 
an observable like this one 

• Simplest thing is to just chop up the 
distribution in an easy way 

• I’m free to add more CRs and VRs 

• This all looks great if my signal is 
mostly up in my SR

CR 1 SRCR 2 VR 1 VR 2

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-20-004/


TIME FOR AN ASIDE
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Statistics are Magic
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• Check out the academic training lectures by Glen Cowan for a 
really nice introduction to statistics for HEP physicists 

• Here I’m just going to mention a few key statistical features 

• And I’m going to jump around a little bit here (sorry) 

Danger (and apologies): My statistics understanding is not rigorous 
and academic; rather it is gained from lots of experience and built 
on the resulting intuition. I expect the following explanations will 
work great for some of you and terribly for others; for those of you 
for whom it doesn’t work, see Cowan above and his books… 

https://indico.cern.ch/event/1040092/


Looking at distributions
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• For simple counting experiments, the statistics are pretty easy 

• If we expect on average 0.5 events and observe 5, that’s unlikely 

• A small p-value means something is unlikely 

• Very often we use a Gaussian approximation to turn that p-value into a 
“number of standard deviations”



Looking at distributions
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• For complicated tests, we play a similar statistical game 

• Here p0 is the probability of the background-only hypothesis 

• A small p-value means something is unlikely 

• Very often we use a Gaussian approximation to turn that p-value into a 
“number of standard deviations”

https://arxiv.org/pdf/1207.7214.pdf


Testing for Signal
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• Our searches come down to this question: 

Is my observation consistent with my background 
estimation or with my background estimation plus 

a new physics signal? 

• First keen observation: 

We NEVER test a hypothesis in a search 

We ONLY compare two hypotheses



Signal and Background
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• In 2000, CLs was created with that simple observation: if our 
background estimate sucks, we shouldn’t claim new physics has 
been discovered.

CLb

CLs = CLsb

CLb

Figures from Bill Murray

<nb>=3

<nsb>=6

https://iopscience.iop.org/article/10.1088/0954-3899/28/10/313/pdf
https://indico.cern.ch/event/99375/contributions/1292095/attachments/1121244/1600012/cls.pdf
https://indico.cern.ch/event/99375/contributions/1292095/attachments/1121244/1600012/cls.pdf


Signal and Background
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• In 2000, CLs was created with that simple observation: if our 
background estimate sucks, we shouldn’t claim new physics has 
been discovered. 

• All LHC searches use CLs (agreed upon standard) to set 95% 
confidence level limits (ignoring the Bayesians here) 

• In very rough terms, but so you’ve seen the lingo: 

• We build a likelihood function including all the information in the search 

• We make a profile likelihood ratio from that function 

• We make a test statistic using that profile likelihood ratio 

• We integrate that test statistic to get a p-value

CLs = CLsb

CLb

https://iopscience.iop.org/article/10.1088/0954-3899/28/10/313/pdf
https://en.wikipedia.org/wiki/Likelihood_function


The important thing about Likelihoods
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• For a simple 1-bin counting experiment, testing the mean of the 
distribution, a likelihood function is pretty simple:

Mean

Standard deviation

Sample Size

https://en.wikipedia.org/wiki/Likelihood-ratio_test


The important thing about Likelihoods
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• A likelihood for a multi-bin experiment (multi-bin fit!) is the 
product of the likelihoods in each bin. 

• These can get very complicated 

• The likelihood does not know what you have called a control 
region and a signal region!

https://arxiv.org/pdf/1412.2641.pdf
https://indico.cern.ch/event/801520/contributions/3530703/attachments/1912953/3161898/SUSY_W2019_vivarelli.pdf


AND WE'RE BACK
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What are CRs and SRs
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• Building a likelihood to do the fit really 
means I have two choices for regions: 
include them in the fit, or don’t 
include them in the fit 

• If I include a region in my fit, the fit will do 
its best to make my expectation match the 
data 

• I can then dream up a few different fit 
configurations: 

• Fit the CRs only, look in the VRs and SRs 
(often done as a “discovery test”) 

• Fit the CRs and SRs (often done as an 
“exclusion test”) 

• Normally we don’t include the VRs in the 
fit (~never)

CR 1 SRCR 2 VR 1 VR 2

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-20-004/index.html


The naive implication
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• In a multi-bin fit, I do not care where 
the signal is and where the 
background is 

• The fit will magically test the right 
bins for signal and use the others to 
constrain the background

CR 1 SRCR 2 VR 1 VR 2

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-20-004/index.html


A simple two-bin example
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• Let’s compare some tests! 

• If I have a case where my signal regions are really different, and 
my signal is only in one, then I’m better off binning! 

• If the signal is in both, I didn’t really lose anything 

• This is key: I can’t arbitrarily cut up the data and do better!
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A simple two-bin example

92

• Even better, if it’s the same background, one signal region 
effectively acts like a control region for the background! 

• Multi-bin fits are extremely powerful, but we’ll talk more in the 
next bit about why they’re also extremely hard to do correctly
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Adding Complexity
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• This setup is easy to scale, so it was not long before we saw 
searches that do things like this:

http://cms-results.web.cern.ch/cms-results/public-results/publications/SUS-19-006/index.html


• We have decided on a search strategy. Now we need to estimate our 
backgrounds!

Searching Step 2: Estimating Backgrounds
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• Remember that the treatment of the background and the way you attack 
the signal need not be the same! 

• You can do a multi-bin fit to estimate the background in a cut-and-count 
signal region, or shape fits to estimate the background in a multi-bin fit.

https://i.pinimg.com/236x/3a/d6/49/3ad6493c7e489944d4e986b79a6a7de8.jpg


Maybe easiest to do: Fit the BG!
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• As mentioned earlier: fits are very nice. 

• If you are fitting something, the function must be sufficiently 
general, but not too general 

• You should be fitting a background with a function. 

• Don’t try and mix things, you’ll have a bad time.

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2015-09/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-23/
https://cms.cern/news/cms-sees-evidence-higgs-boson-decaying-muons


Maybe easiest to do
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• Motivating fit functions can be very tricky. Particularly if you are 
searching a tail, you need to be sure that the function captures 
the behavior in the tail. 

• Some folks have attempted pretty complicated setups to do this.

http://cms-results.web.cern.ch/cms-results/public-results/publications/SUS-11-024/index.html


• “Just use Monte Carlo simulation” 

• There is a lot to think about here 
• What accuracy do you need from the MC? Higher order? Multi-leg? This may 

depend on your signal region! 

• How do you establish uncertainties? There are lots of potential uncertainties 
one could consider, and they take a lot of effort to understand. 

• There are as many opinions about doing this “correctly” as stars in the 
night sky. FOLLOW YOUR GROUP’S RECOMMENDATIONS. 
• But remember: Recommendations do not excuse you from using your brain. 

• If you don’t follow the recommendations and don’t have a good reason, you’re 
gonna have a really bad time during approval of the search. 

• If you see lots of searches doing the same thing, that’s not a coincidence. 

• We will talk a bit about some of these things in a bit, but I’m going to 
resist the temptation to try to give you a recipe to follow.

Easy to say, hard to do well
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• You might have heard: “All Monte Carlo is junk; estimate your 
backgrounds from data!” 

• That’s waaaaaaaaaaay too negative and oversimplified (but sometimes 
useful anyway) 

• These people are pushing towards data-driven backgrounds

Pessimists Attack
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https://cloudblogs.microsoft.com/industry-blog/en-gb/cross-industry/2020/01/16/how-to-become-data-driven/


• There are lots of flavors of data-
driven backgrounds 
• Fits of all kinds (!) – we’ve spoken 

enough about these for the moment 

• Combinatoric estimates 

• Fake object estimates 

• Flavor, charge, or other symmetry-
based estimates 

• ABCD 

• Most of these require some care 
because of their model 
dependence. 

• CMS do much more of this than 
ATLAS.

Data-driven Backgrounds
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• This is a beautiful ‘trick’ that is common in B-physics measurements 

• When your background is combinatorial, you can often e.g. use same-
sign combinations to estimate opposite-sign combinations 
• If it applies, this is a really nice way to estimate your background

Combinatorics
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• This is a beautiful ‘trick’ that is common in B-physics measurements 

• When your background is combinatorial, you can often e.g. use same-
sign combinations to estimate opposite-sign combinations 
• If it applies, this is a really nice way to estimate your background

Combinatorics
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-16/
https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/LHCb-PAPER-2021-007.html


• There are two common ways to estimate fake object backgrounds 
• The matrix method and the fake factor method 

• They are mathematically equivalent in some setups! 

• Both boil down to very similar steps conceptually: 
• Create loose and tight object IDs (tight will be what you use in your SRs) 

• Estimate how likely a true object identified as loose is to be identified as tight 
(tag and probe; often as a function of kinematics like pT) 

• Estimate how likely a fake object identified as loose is to be identified as tight 
(special ‘enhanced fake’ selections) 

• Measure the number of loose objects that would otherwise fall in your SRs or 
that would fall in some carefully selected region 

• Apply a factor or weight to those events with loose objects to estimate the 
number of tight objects in your SRs that are from fake objects 

• There are lots of tricks and caveats, but that’s the basic deal

Fakes (Fake leptons…)

102



• Or in equations:

Fakes
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Number of true objects

Number of fake objects

Number of tight objects

Number of loose objectsReal/fake 
efficiencies

Real/fake 
efficienciesNumber of tight objects

Number of loose objects

Number of true objects

Number of fake objects

Inverted:

https://cds.cern.ch/record/2041439/files/gillam_thesis.pdf
https://cds.cern.ch/record/2041439/files/gillam_thesis.pdf
https://cds.cern.ch/record/2041439/files/gillam_thesis.pdf


• Or in equations:

Fakes
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Number of true objects

Number of fake objects

Number of tight objects

Number of loose objectsReal/fake 
efficiencies

Solved:

Real/fake 
efficiencies

Number of tight 
fake objects

Number of tight 
or loose objects

https://cds.cern.ch/record/2041439/files/gillam_thesis.pdf
https://cds.cern.ch/record/2041439/files/gillam_thesis.pdf


• It can get more complicated for more leptons… 

• Usually people don’t go beyond 2 or 3 fake leptons

Fakes
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https://cds.cern.ch/record/2041439/files/gillam_thesis.pdf

