

Road path to the instrumentation lectures

-Why instrumentation is important?

- Introduction on how we detect particles
- The LHC detectors
-Demonstrating that a luminosity of $10^{34} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}$ could be usable was not easy and required a large RD effort that took decades
- New technologies for the LHC upgrades and FCC

First ideas for LHC detectors in 1984 Lausanne ECFA meeting

Road path to the instrumentation lectures

-Why instrumentation is important?

- Introduction on how we detect particles
- The LHC detectors
-Demonstrating that a luminosity of $10^{34} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}$ could be usable was not easy and required a large RD effort that took decades
- New technologies for the LHC upgrades and FCC

To François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider "

Unprecedented discoveries: Higgs

Probing the predictions of SM

Yukawa coupling modifier $\left|\mathrm{K}_{\mathrm{c}}\right|<8.5$ at 95\% CL

But also others

LHCb:

PENTAQUARKS

 2015

Spherical: five tightly bound

! IIII!

LHC Exotic Hadrons 15 at LHCb, 1 at CMS

Patrick Koppenburg
$\bullet^{x(6900)}$
6000 quarks contained in symmetric volume?

ALICE: QGP

Perhaps showing some cracks in the SM

$$
R_{K}=0.846_{-0.041}^{+0.044}
$$

Elliptical flow

A PRIMER ON DETECTORS IN HIGH LUMINOSITY ENVIRONMENT
Or why you can't do physics at 10^{33}
R. Huson, L. M. Lederman and R. Schwitters Fermi National Accelerator Laboratory*

Batavia, Illinois 60510
tracking efficiency; there is in fact a fair likelinood that these high multiplicities will render any of the tracking devices, as we now understand them, inoperable. PWC's have operated at ambient
confused by the integration, but it is also clear that a large enough number of random accumulations of 10 or 20 minimum bias events can generate fake physics.

1982 SNOWMASS

program of which 10 years have already been spent.
Nevertheless, (and this is the principal motivation of
this paper), work must continue on decreasing the
integrating time of tracking detectors, preferably
without breaking the bank by infinite readout
channels. Calorimetry is fundamentally ugly; a cure
here would be to improve resolution, decrease
integrating time and find a cheap substitute for
steel.

LHC and High-Luminosity LHC

LHC Nominal Instantaneous Luminosity $1 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
$2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
$5-7.5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

- $190 \mathrm{fb}^{-1}$ only about 5% of the entire programme
- LHC + HL-LHC is the largest pp dataset for the next few decades

The incredible challenge of HL-LHC

Run 2 LHC pileup $<\mu>=37$

HL-LHC pileup $<\mu>=200$

- Radiation levels up to:
- fluence of $2 \times 10^{16} 1 \mathrm{MeV} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}$
- Total lonizing Dose (TID) ~ 1 Grad

The FCC Project

Alignment Location

100 Km Tunnel (CHF 5B)

- $\mathrm{e}^{+} \mathrm{e}^{-}$collider (FCC-ee) at the intensity frontier (CHF 5B, 2040-2050)
- High luminosity
$-\sqrt{ } \mathrm{s}=90-400 \mathrm{GeV}$
- Ultimate goal: 100 TeV pp collider (FCC-hh) at the energy frontier (CHF 15B, 2050-2075)
-Requires R\&D for 16T magnets
- Defines the infrastructure

Increased Performance Hadron Colliders

LHC

Peak Luminosity
$1-2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Integrated Luminosity $300-400 \mathrm{fb}^{-1}$

HL-LHC

Peak Luminosity

$$
5-7 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

Integrated Luminosity $3000-4000 \mathrm{fb}^{-1}$

FCC-hh

Peak Luminosity
$5-30 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Integrated Luminosity
$30 \mathrm{ab}^{-1}$

INSTRUMENTATION

"New directions in science are launched by new tools much more often than by new concepts.

The effect of a concept-driven revolution is to explain old things in new ways.

The effect of a tool-driven revolution is to discover new things that have to be explained"

Freeman Dyson

Detecting Elementary Particles

- The goal of LHC detectors was to measure well: $\mathrm{e}, \mu, \mathrm{\tau}$, $\mathrm{Y}, \mathrm{W}, \mathrm{Z}$, jets, missing E_{T}, b tagging
- For W and Z, the information would be reconstructed through their decay to: $Z \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}, q q \ldots$ and $\mathrm{W} \rightarrow$ $e v, \mu \nu, q q^{\prime} . .$.
- B-tagging: reconstructing vertices of charged particles ($\mathrm{e}, \mu, p, \pi^{ \pm}, K^{ \pm}$) with a precision of $\approx 10 \mu \mathrm{~m}$

Claus Grupen

- Every effect of particles or radiation can be used as a working principle for a particle detector.

EM interaction of charged particles with matter

Interaction with the atomic electrons

Incoming particles lose energy and atoms are excited or ionized.

Interaction with the atomic nucleus.

Particles are deflected and a Bremsstrahlung photon can be emitted.

If the particle's velocity is > the velocity of light in the medium \rightarrow Cherenkov Radiation.

When a particle crosses the boundary between two media, there is a probability $\approx 1 \%$ to produce an X ray photon Transition radiation.

Energy loss by ionization

- The Bethe-Bloch equation for energy loss

Valid for heavy charged particles ($m_{\text {incident }} \gg m_{e}$), e.g. proton, k, π, μ

$$
-\left\langle\frac{d E}{d x}\right\rangle=2 \pi N_{a} r_{e}^{2} m_{e} c^{2} \rho \frac{Z}{A} \frac{z^{2}}{\beta^{2}}\left[\ln \left(\frac{2 m_{e} c^{2} \beta^{2} \gamma^{2}}{I^{2}} W_{\max }\right)-2 \beta^{2}-\delta(\beta \gamma)-\frac{C}{Z}\right]
$$

Fundamental constants
$=0.1535 \mathrm{MeV} \mathrm{cm}^{2} / \mathrm{g}$
$\frac{d E}{d x} \propto \frac{Z^{2}}{\beta^{2}} \ln \left(a \beta^{2} \gamma^{2}\right)$
Absorber medium
I = mean ionization potential
$Z=$ atomic number of absorber
$A=$ atomic weight of absorber
$\rho=$ density of absorber
$\delta=$ density correction
C = shell correction

Incident particle

$z=$ charge of incident particle
$\beta=\mathrm{v} / \mathrm{c}$ of incident particle
$\gamma=\left(1-\beta^{2}\right)^{-1 / 2}$
$\mathrm{W}_{\text {max }}=$ max. energy transfer in one collision

The Bethe-Bloch Formula

- Common features:
- fast growth, as $1 / \boldsymbol{\beta}^{2}$, at low energy
- wide minimum in the range $3 \leq \beta \gamma \leq 4$,
- slow increase at high $\beta \boldsymbol{\gamma}$.
- A particle with dE/dx near the minimum is a minimum-ionizing particle or mip.
- The mip's ionization losses for all materials except hydrogen are in the range 1-2 MeV/(g/cm²)
- increasing from large to low Z of the absorber.

dE/dx Fluctuations

- A real detector cannot measure <dE/dx>
- It measures the energy ΔE deposited in layers of finite thickness Δx
- Repeated measurements are needed
- Thin layers or low density materials: $\mathrm{dE} / \mathrm{dx}$ has large fluctuations towards high losses (Landau-Vavilov, Bichsel)

$$
\Delta \mathrm{E}_{\text {most probable }}<\Delta \mathrm{E}>
$$

- Thick layers and high density materials: the $\mathrm{dE} / \mathrm{dx}$ is a more Gaussian-like (many collisions

D. Bortoletto, Lecture 1

Multiple scattering

- A particle passing through material undergoes also multiple deflections due to Coulomb scattering with the nuclei
- The scattering angle as a function of the thickness x is
$\theta_{\mathrm{rms}}^{\mathrm{proj}}=\sqrt{\left\langle\theta^{2}\right\rangle}=\frac{13.6 \mathrm{MeV}}{\beta c p} z \sqrt{\frac{x}{X_{0}}}\left[1+0.038 \ln \left(x / X_{0}\right)\right]$
- Where:
- p (in $\mathrm{MeV} / \mathrm{c}$) is the momentum, $\beta \mathrm{c}$ the velocity

$$
X_{0} \cong \frac{716.4 \mathrm{~g} \cdot \mathrm{~cm}^{-2} A}{Z(Z+1) \ln (287 / \sqrt{Z})}
$$

- z the charge of the scattered particle
$-x / X_{0}$ is the thickness of the medium in units of radiation radiation length $\left(X_{0}\right)$.

- Small deflections:

- Large Radiation length X_{0} - i.e. low Z and low density material (Be, C ...)
- Small x i.e. very thin detector elements
- Multiple scattering limiting tracking performance at low p

Tracking detectors

- High granularity detectors close to the interaction region measuring the trajectory using "hits" due to charged particles ionizing a material (gas, silicon)
- charged particles' momenta determined from their curvature in a B field ($R[\mathrm{~m}]=p[\mathrm{GeV} / \mathrm{c}] /(0.3 B[\mathrm{~T}])$
- Extrapolation to origin allows the reconstruction of Primary Vertex of the "hard scattering", while secondary vertices identify tauleptons, b and c -hadrons by lifetime tagging $(d=\beta \gamma c \tau)$

Gas Detectors

Silicon Detectors

D. Bortoletto, Lecture 1

Impact Parameter

- Distance between primary vertex and prolongation is called impact parameter (d).
- If d is large the probability is high that the track comes from a secondary vertex
- Distance can be used for tagging b-jets and c-jets ($\beta \gamma c \tau$)

Impact Parameter resolution

- Vertex projection from two points: simplified telescope equation Pointing resolution $=(\mathrm{a} \oplus \mathrm{b}) \mu \mathrm{m}$
$a=$ depends on detector position resolution

Minimize Δx : e.g. $50 \mu \mathrm{~m}$ pixel and r_{2} very large compared to r_{1} (first layer as close as possible to IP) $\rightarrow a=\Delta x=50 / \sqrt{ } 12=15 \mu \mathrm{~m}$
$\mathrm{b}=$ depends on multiple scattering

First layer with minimal amount of material: e.g. $x / X_{0}=0.0114, r_{1}=39 \mathrm{~mm} \rightarrow \mathrm{~b}=57 \mu \mathrm{~m}$ for $p=1 \mathrm{GeV} / \mathrm{c}$

Impact Parameter resolution

- Improvement by inserting IBL in the ATLAS Pixel system just before the start of Run 2 in 2015
- IBL: radius of 3.3 cm , smaller pixels $50 \mu \mathrm{~m} \times 250 \mu \mathrm{~m}$ (instead of 50 $\mu \mathrm{m} \times 400 \mu \mathrm{~m}$) and lower mass

Momentum resolution

- Analytic expressions for momentum, track angle and impact parameter resolution have been calculated for equidistant layers

- solenoid spectrometer with a constant B-field
- $N+1$ equal and equidistant detector planes.
- d_{i} the thickness of a single detector plane in X_{0} units
- $d_{t o t}=(N+1) d_{i}$

$$
\begin{aligned}
\left.\frac{\Delta p_{T}}{p_{T}}\right|_{m . s .}= & \frac{N}{\sqrt{(N+1)(N-1)}} \frac{0.0136 \mathrm{GeV} / \mathrm{c}}{0.3 \beta B_{0} L_{0}} \\
& \times \sqrt{\frac{d_{\text {tot }}}{X_{0} \sin \theta}}\left(1+0.038 \ln \frac{d}{X_{0} \sin \theta}\right) \\
\approx & \frac{0.0136 \mathrm{GeV} / \mathrm{c}}{0.3 \beta B_{0} L_{0}} \sqrt{\frac{d_{\text {tot }}}{X_{0} \sin \theta}}
\end{aligned}
$$

$$
\begin{aligned}
\left.\frac{\Delta p_{T}}{p_{T}}\right|_{r e s .} & =\frac{\sigma_{r \phi} p_{T}}{0.3 B_{0} L_{0}^{2}} \sqrt{\frac{720 N^{3}}{(N-1)(N+1)(N+2)(N+3)}} \\
& \approx \frac{12 \sigma_{r \phi} p_{T}}{0.3 B_{0} L_{0}^{2}} \sqrt{\frac{5}{N+5}}
\end{aligned}
$$

Momentum resolution

- Analytic expressions for momentum, track angle and impact parameter resolution have been calculated for equidistant layers

- solenoid spectrometer with
a constant B-field
- $N+1$ equal and equidistant detector planes. - d_{i} the thickness of a single
detector plane in X_{0} units d_{i} the thickness of a single
detector plane in X_{0} units
- $d_{t o t}=(N+1) d_{i}$
- Good transverse momentum resolution requires: small $\sigma_{\mathrm{r} \phi}$, strong B field, large L_{0} (as L_{0}^{2}), many measurement layers $N($ as \sqrt{N}), thin measurement layers (d_{i}), long X_{0}, low Z materials
- Momentum resolution gets worse at large p_{T}

Atlas and CMS tracking

All silicon system in 3.8 T solenoid field

C

Strips: $198 \mathrm{~m}^{2}$ with 9.3 M channels
Inner: 4 barrel layers,
3 end-cap disks Outer: 6 barrel layers, 9 wheels

Pixels: 66M pixels each $150 \times 100 \mu \mathrm{~m}^{2}$ pixels 3 barrel layers, 2 endcap disks/side (Upgraded in phase 1 to 4 barrel layers + 3 endcaps/side)

Silicon pixel and strip + transition radiation
 4 barrel layers + 9 disks per endcap
$30 \mathrm{~cm}<\mathrm{R}<52 \mathrm{~cm}$

each $50 \times 400 \mu \mathrm{~m}^{2}$ 3 Barrel layers 3 endcap disks/side IBL: $50 \times 250 \mu \mathrm{~m}^{2}$

From particle to hits

- Charged particle will create O(24000) electron-
- Charge > threshold is considered a hit
- If charge is collected in multiple adjacent pixel/strips, the hits are grouped together into a cluster
- Challenge: this can lead to merged clusters in
- Detector granularity critical to maintain low occupancy
- Hit reconstruction efficiency (in working modules) is > 99\% typically
- As a rule of thumb the position resolution is pitch/sqrt(12)

hole pairs

dense environments

dE/dx and particle ID

- dE/dx is a function of $\beta \gamma=P / M c$ and can be used to separate different particles once p is known
- μ / π separation impossible, but $\pi / K / p$ generally achievable

ALICE TPC - silicon ITS

Electron energy loss

- Electrons loose energy in their interaction with matter mainly through:
- Ionization - modified Bethe-Bloch formula for identical particles
- Bremsstrahlung - energy loss proportional to $1 / \mathrm{m}^{2}$
- Dominant for electrons with $\mathrm{E}_{\mathrm{e}}>10 \mathrm{MeV}$ (and for h.e. muons) leading to exponential attenuation of the electron energy
$\left(\frac{d E}{d x}\right)_{B r e m}=-\frac{E}{X_{0}}$

$$
E(x)=E(0) \exp \left(-\frac{x}{X_{0}}\right)
$$

Bremsstrahlung

- <dE/dx> ${ }_{\text {brem }}$ increases linearly with the initial energy E
- After passing a layer of material of thickness X_{0} the electron has $1 /$ e of its initial energy.

$$
\begin{aligned}
X_{0} & \cong \frac{716.4 \mathrm{~g} \cdot \mathrm{~cm}^{-2} \mathrm{~A}}{Z(Z+1) \ln (287 / \sqrt{\mathrm{Z}})} \\
X_{0} & =\text { radiation length } \mathrm{g} / \mathrm{cm}^{2}
\end{aligned}
$$

Must multiply by density to get a length!

- To contain an electron need small X_{0} high Z materials
- The Moliere radius is the transverse size of the electron shower:

$$
R_{M} \cong \frac{21.2 \mathrm{MeV}}{E_{c}} X_{0}
$$

Total Energy loss and Critical energy
Critical energy
$\left|\frac{d E}{d x}\left(E_{c}\right)\right|_{\text {brems }}=\left.\frac{d E}{d x}\left(E_{c}\right)\right|_{\text {ion }}$
For solid and liquids
$E_{c}=\frac{610 \mathrm{MeV}}{Z+1.24}$
For gasses
$E_{c}=\frac{710 \mathrm{MeV}}{Z+0.92}$
Example Copper:
$\mathrm{E}_{\mathrm{c}} \approx 610 / 30 \mathrm{MeV} \approx 20 \mathrm{MeV}$

Muon Energy loss

The bremsstrahlung cross section is proportional to $1 / \mathrm{m}^{2}$

$$
-\left\langle\frac{d E}{d x}\right\rangle_{\text {brem }} \propto \frac{E}{m^{2}}
$$

Since $\left(m_{\mu} / m_{e}\right)^{2} \approx 44100 \quad E_{c}$ for muons $>100 s \mathrm{GeV}$.

- Critical energy for muons is 450 GeV in copper
- At high energies (E 1 TeV) bremsstrahlung contributes about 40\% to average muon energy loss.
- Muons with energies > ~10 GeV can penetrate thick layers of matter
- This is the key signature for muon identification

Interaction of photons with matter

- A photon can disappear or its energy can change dramatically at every interaction

$I(x)=I_{0} e^{-\mu x}$	$\mu=\frac{N_{A}}{A} \sum_{i=1}^{3} \sigma_{i}$
$\lambda=\frac{1}{\mu}$	$\mu=$ total attenuation coefficient $\sigma_{i}=$ cross section for each process

Photoelectric Effect

Compton Scattering

Interaction of photons with matter

- Photons with E>100 MeV loose most of their energy in $\mathrm{e}^{+} e^{-}$pair production
- The threshold in the field of nuclei is $\mathrm{T}=2 \mathrm{~m}_{e} \mathrm{c}^{2}$ $=1.022 \mathrm{MeV}$
- The pair production cross section is:

$$
\sigma_{\text {pair }} \sim \frac{7}{9} \frac{A}{N_{A}} \frac{1}{X_{0}}
$$

Where A is the mass number of the target and N_{A} Avogadro Number

- The radiation length X_{0} is also $7 / 9$ of the mean free path for pair production by a high-energy photon

EM showers and X_{0}

- Simplified model [Heitler]: shower development governed by X_{0}
- e^{-}loses $[1-1 / \mathrm{e}]=63 \%$ of energy in $1 \mathrm{X}_{0}$ (Brems.)
- A γ will convert into a $\mathrm{e}^{+} \mathrm{e}^{-}$(pair prod.) with a probability $\mathrm{P}=1-\exp (-7 / 9)=0.54$
- Assume $\mathrm{e} \approx 2$ and that for $\mathrm{E}>\mathrm{E}_{\mathrm{c}}$
 no energy loss by ionization/excitation
- Simple shower model:
- $N(t)=2^{t}$ particles after $t=x / X_{0}$ each with energy $E(t)=E_{0} / 2^{t}$
- Stops if $E(t)<\mathrm{E}_{\mathrm{c}}=\mathrm{E}_{0} 2^{\text {tmax }}$
- Location of shower maximum at

$$
t_{\max }=\frac{\ln \left(E_{0} / E_{c}\right)}{\ln 2} \propto \ln \left(\frac{E_{0}}{E_{c}}\right)
$$

Radiation length of different elements

EM Shower development

Transverse development for 10 GeV electron showers in Cu

- Size of calorimeter driven by X_{0}
- Cell size related to R_{M} and chosen such that $70-80 \%$ of energy of a particle is deposited in the cell
- Granularity: size of detector elements in transverse and longitudinal direction. Determines the ability to resolve two showers induced by nearby particles

Longitudinal development

95\% of energy within:

$L(95 \%)=t_{\text {max }}+0.08 Z+9.6 X_{0}$

$$
X_{0}=\frac{180 \mathrm{~A}}{Z^{2}}\left(\mathrm{~g} \mathrm{~cm}^{-2}\right) \text { and } t_{\max }=\ln \frac{E}{E_{c}}-1
$$ (for e induced showers)

90% of energy: R_{M} Beyond shower max
broadening due to low energy γ $R_{M}=\frac{21 \mathrm{MeV}}{E_{C}} X_{0}$

Hadron interactions with matter

- Many processes involved:
-lonization,
-hadron production (fragmentation, ...
-Charge exchange $\pi^{+/-n} \rightarrow$ $\pi^{0} \mathrm{p} / \mathrm{pbar}$
-nuclear de-excitation,
-nuclear breakup,
-spallation neutrons,
-muon and pion decay+

Hadronic showers
Hadronic interaction:

Elastic:

$p+$ Nucleus $\rightarrow p+$ Nucleus Inelastic:
$p+$ Nucleus \rightarrow
$\pi^{+}+\pi^{-}+\pi^{U}+\ldots+$ Nucleus*

Heavy Nucleus (e.g. U)
 hadron

Intranuclear cascade (Spallation $10^{-22} \mathrm{~s}$)

Hadronic Showers

- Electromagnetic component:
- Electrons, photons (from excitation, radiation, decay of hadrons, photoeffect, ...)
- Neutral pions (eg, $\pi^{0} \rightarrow \gamma \gamma, \eta \rightarrow \gamma \gamma$)

- Hadronic component:

- Charged hadrons $\pi^{ \pm}$, $\mathrm{K}^{ \pm}$,...ionization, excitation, nuclei interaction (spallation p/n production, evaporation n , spallation products)
- Neutrons: Elastic collisions, thermalization + capture (=> γ 's)
- Break-up of nuclei

Part of the energy is lost in breaking nuclei (nuclear binding energy)

- Large non-Gaussian fluctuations of each component (EM vs non-EM)
- Large, non-Gaussian fluctuations in "invisible" energy losses

Nuclear Interaction Length

- Hadronic showers are governed by the interaction length $\lambda_{\text {int }}$: the mean free path between inelastic interaction

- Longitudinal: Need about ~10 $\lambda_{\text {int }}$ to contain most of the hadronic showers
- Transverse : Need about ~1.5 $\lambda_{\text {int }}$ to contain most of the hadronic showers

Nuclear Interaction length

- To contain an hadronic, you need small $\lambda_{\text {int }}$

- $\lambda_{\text {int }}(\mathrm{Fe})=17 \mathrm{~cm}$

	Lead	Iron
Ionization by pions	19%	21%
Ionization by protons	37%	53%
Total ionization	56%	74%
Nuclear binding energy loss	32%	16%
Target recoil	2%	5%
Total invisible energy	34%	21%
Kinetic energy evaporation neutrons	10%	5%
Number of charged pions	0.77	1.4
Number of protons	3.5	8
Number of cascade neutrons	5.4	5
Number of evaporation neutrons	31.5	5
Total number of neutrons	36.9	10
Neutrons/protons	$10.5 / 1$	$1.3 / 1$

Figure 34.21: Nuclear interaction length λ_{I} / ρ (circles) and radiation length X_{0} / ρ (+'s) in cm for the chemical elements with $Z>20$ and $\lambda_{I}<50 \mathrm{~cm}$.

- Calorimetry refers to the detection of particles through total absorption in a block of matter
- The measurement process is destructive for almost all particle
- The exception are muons (and neutrinos) \rightarrow identify muons easily since they penetrate a substantial amount of matter

Calorimeters are essential to measure neutral particles

- Sampling calorimeters: alternating layers of "absorbers" and active materials
- Absorbers: Iron, Cupper, Lead....
- Active: Plastic scintillators, silicon detectors, gas detectors...

Energy resolution

- Calorimeters are the ideal instrument to measure the full energy of particles, particularly at high momentum

$$
E \propto N \quad \sigma_{E} \approx \sqrt{N} \approx \sqrt{E}
$$

$$
\sigma_{E}=a \sqrt{E} \oplus b E \oplus \mathrm{c}
$$

$$
\frac{\sigma_{E}}{E}=\frac{a}{\sqrt{E}} \bigoplus \mathrm{~b} \bigoplus \frac{c}{E}
$$

- a: stochastic term
- intrinsic statistical shower fluctuations
- sampling fluctuations
- signal quantum fluctuations (e.g. photoelectron statistics)
- c: noise term
- readout electronic noise
- Radio-activity, pile-up fluctuations
- b: constant term
- inhomogeneities (hardware or calibration)
- imperfections in calorimeter construction (dimensional variations, etc.)
- non-linearity of readout electronics
- fluctuations in longitudinal energy containment (leakage can also be ~E-1/4)
- fluctuations in energy lost in dead material before or within the calorimeter

The CMS deteator:

CMS ECAL

Homogeneous Ecal, PbWO_{4} crystals 23 (22) cm long in Barrel (endcap)

- Excellent energy resolution
$-X_{0}=0.89 \mathrm{~cm} \Rightarrow$ compact calorimeter
$-R_{M}=22 \mathrm{~cm} \Rightarrow$ compact shower development
- Fast light emission
- Radiation hard (105 Gy)
- But low light yield ($150 \gamma / \mathrm{MeV}$) and response depends on Temperature and dose
- Endcap I ($1.48<|\eta|<3), ~ \sim 23$ t
- 14648 crystals over 4 Dees (2 per endcap)

ATLAS ECAL

- Sampling Pb/LAr calorimeter with "accordion" geometry
- Longitudinal depth ~ $25 \mathrm{X}_{0}, 47 \mathrm{~cm}$ (vs 22 cm for CMS)
- 3 layers up to $|\eta|=2.5$
- 2 layers $2.5<|\eta|<2$.
- Usage of Liquid Argon
- Radiation Hard
- High number of electron-ion pair produced by ionization (1 GeV deposit $\rightarrow 5 \times 10^{6} \mathrm{e}$-)
- Stable vs time but needs cryostat (90K)

CMS and ATLAS calorimeter performance

- Standalone performance in test beams

ATLAS

$$
\frac{\sigma}{E}=\frac{2.8 \%}{\sqrt{E(\mathrm{GeV})}} \oplus \frac{125}{E(\mathrm{MeV})} \oplus 0.3 \%
$$

$$
\frac{\sigma}{E}=\frac{10 \%}{\sqrt{E}} \oplus \frac{0.3}{E} \oplus 0.7 \%
$$

CMS HCAL

- HB/HE: Sampling Brass/plastic scintillator calorimeter

- Scintillator + WLS outside coil acting as
"tail catcher"
- Standalone resolution 100\%/sqrt(E)
- At $|\eta|=0, \lambda_{\text {int }}$ from $\mathrm{HB}=5.8$ (7.2 with ECAL) \rightarrow Large leakage...
- CMS adds HCAL Outer (HO):

ATLAS HCAL

- Different technologies depending on the dose
- Total thickness about 8$10 \lambda_{\text {int }}$
- $|\eta|<1.7$ - Tile calorimeter Iron and scintillator
-1.7<| $\mid<3.2$ LAr/Cu
-3.2<| $\mid<4.9$ Forward calorimeter LAr/Cu or W

ATLAS Tile calorimeter

- steel/scintillator, scintillating fibers, readout by photomultiplier

Impact of calorimeter resolution

No kinematic fits, just Average di-jet mass direct measurement

- Comparing $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{WW}$ and $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{ZZ}$ at $\sqrt{\mathrm{s}=300 \mathrm{GeV}, ~}$ (hadronic decays only, assume WW:ZZ = 1:1 for illustration)
- Reality = 7:1!
- $30 \% \sqrt{E_{j e t}}$ is a good target. Physics may demand even more!

Muon Detection

- Muon identification, momentum measurement, and triggering depends on inner tracking system and muon spectrometers located after the calorimeters
- Layout depends critically on the magnet configuration adopted for the experiment.
- Both ATLAS and CMS inner trackers are in a solenoidal B field along the beam direction

CMS Muon spectrometer return field of solenoid for CMS

8/30/21

ATLAS muon spectrometer in air core Toroids (3.8 T peak) 0.8 T average in Barrel Toroid

ATLAS vs CMS Muon resolution

Punchthrough

- When does a pion look like a muon?
- Total punchthrough probability of hadronic showers at a given depth x is $P(x)=\frac{N_{h i t}(x)}{N_{t o t}}$

Pion Punchthrough probability - from RD5

Tracker	EM cal	Hadronic calorimeter	Muon tracker
electron		EM	
muon			
hadrons			

Scintillation counters:
S1: $10 \mathrm{~cm} \times 15 \mathrm{~cm} \quad$ S2, S3
S4a: 4 cm x 4 cm
S4b: $2 \mathrm{~cm} x \quad 2 \mathrm{~cm}$
S5: $15 \mathrm{~cm} \times 15 \mathrm{~cm}$
S7: $100 \mathrm{~cm} \times 250 \mathrm{~cm}$

The RD5 muon spectrometer
('93 setup, Top view)

- Veto RPC

Neutrinos

- "Detected" by missing momentum - Must make sure your detector is hermetic!

Building a collider detector

- Vertex Detectors: measure origin
- Trackers: Measure "charge" and momentum by bending the particle in a magnetic field
-Light weight, low Z materials to measure precisely the position of the particle
- Calorimeters: detection of particles through total absorption
- Process is destructive for almost all particles except muons and neutrinos
- EM calorimeters: high Z materials to catch electrons and photons
- Hadron Calorimeters: hadron interact mainly via the strong interaction, high A materials (Iron,Copper)
- Muon detectors: tracking detectors

- Forward Spectrometer Configuration

Dipole LCb integrated field 4Tm

- At high energies b- and bhadrons are produced mainly in the same forward or backward cone.
$-<\mathrm{p}_{\mathrm{T}}(\mathrm{b})>\sim 80 \mathrm{GeV} / \mathrm{c} \rightarrow 7$ mm mean decay distance \rightarrow good separation between primary and decay vertices.
- Dipole magnet
- Particle deflected in x-z plane
- Detectors are arranged in parallel planes along z
- Bending from difference of the slopes before and after magnet

$$
A^{C P}=(-8.2 \pm 0.03 \pm 0.03) \%
$$

- Physics goals:
- precision measurements of the CKM matrix to probe the validity of the SM and CP violation
- Measurements of processes strongly suppressed in the SM which could be enhanced by NP
- Measurements of rare decays $B_{S} \rightarrow \mu^{+} \mu^{-}$
- Studies of lepton universalities
- Detector
- Excellent vertex and proper time resolution (VELO)
- Precise particle identification (ID): hadron π / K separation with Ring Imaging Cherenkov counters (RICH)
- High momentum resolution for precise invariant mass reconstruction
- A versatile trigger scheme

Needed to distinguish $B^{0} \rightarrow \pi^{+} \pi^{-}$ from $B^{0} \rightarrow K^{+} \pi^{-}$

$$
4
$$

- Physics goals:
- precision measurements of the CKM matrix to probe the validity of the SM and CP violation
- Measurements of processes strongly suppressed in the SM which could be enhanced by NP
- Measurements of rare decays $B_{S} \rightarrow \mu^{+} \mu^{-}$
- Studies of lepton universalities
- Detector
- Excellent vertex and proper time resolution (VELO)
- Precise particle identification (ID): hadron π / K separation with Ring Imaging Cherenkov counters (RICH)
- High momentum resolution for precise invariant mass reconstruction
- A versatile trigger scheme

ALICE

- Measurements down to very low p_{T}
- Particle ID in the Time Projection Chamber and Time of Flight detectors
- Excellent vertex detectors to measured heavy flavour charmed and beauty baryons
- Forward muon
spectrometer studies the complete spectrum of heavy quarkonia (J / ψ and Υ resonances)

TPC (+ITS) dE/dx

HMPID - Cherenkov radiation

D. Bortoletto, Lecture 1

Plus

- Transition radiation detector (TRD)
- Photon spectrometer (PHOS)
- EM calorimeter (EMCAL)
- Muon spectrometer

Conclusion

- Detector configuration critically depends on the physics goals
- CERN RD programme was essential to design the LHC detectors
- Similar programme must be put in place for the experiments at future colliders
- Tomorrow we will focus on silicon detectors and the new detector ideas emerging already for HL-LHC upgrade

Energy loss by photon emission

- Emission of Cherenkov light
- Emission of transition radiation

EM Shower development

Useful relations

$X_{0}=\frac{180 A}{z^{2}}\left(\mathrm{~g} \mathrm{~cm}^{-2}\right)$
$E_{c}=\frac{580}{Z}(\mathrm{MeV})$
$R_{M}=\frac{21 \mathrm{MeV}}{E_{C}} X_{0}$
$t_{\max }=\ln \frac{E}{E_{C}}-1$ e induced
showers
$t_{\max }=\ln \frac{E}{E_{c}}-0.5 \quad \gamma$ induced showers

Longitudinal development

95\% of energy within:
$L(95 \%)=t_{\max }+0.08 Z+9.6 X_{0}$

Transverse development for 10 GeV electron showers in Cu

Distance from shower axis [RM]
90\% (95\%) of energy: $R_{M}\left(2 R_{M}\right)$

- Beyond shower max broadening due to low energy photons

Hadronic shower fluctuations

- No "characteristic" profile
- EM component (f_{em}) to the hadronic
-on average $1 / 3$ of mesons produced are $\pi^{0} \mathrm{~s}$, which yield an shower due to $\pi^{0} \rightarrow \gamma \gamma$
-hadronic decays to π^{0}
- Considerable event-to-event fluctuation in f_{em}
- Non linear response

Cherenkov emission

- If the velocity of a particle is such that $\beta=v_{p} / c>c / n(\lambda)$ where $n(\lambda)$ is the index of refraction of the material, a pulse of light is emitted around the particle direction with an opening angle ($\boldsymbol{\theta}_{\mathrm{c}}$)

- The threshold velocity

$$
\beta_{t h}=\frac{v_{t h}}{c}=\frac{1}{n(\lambda)}
$$

Cherenkov angle

Number of produced photons:

$$
N_{\text {photons }}=L \frac{\alpha}{\hbar c} Z^{2} \int \sin ^{2} \theta_{c}(E) d E
$$

Cherenkov photon emission

Cherenkov radiation glowing in the core of a reactor

- Cherenkov emission is a weak effect and causes no significant energy loss (<1\%)
- It takes place only if the track L of the particle in the radiating medium is longer than the wavelength λ of the radiated photons.
- Typically $\mathrm{O}(1-2 \mathrm{keV} / \mathrm{cm})$ or $\mathrm{O}(100-200)$ visible photons /cm

Refractive index range

Momentum

Silica Aerogel

RICH performance

$$
N_{\sigma} \approx \frac{\left|m_{1}^{2}-m_{2}^{2}\right|}{2 P^{2} \sigma\left[\theta_{c}(t o t) \sqrt{n^{2}-1}\right.}
$$

For particles well above threshold
B. N. Ratcliff, NIMA 502 (2003) 211-221

Transition radiation

- Transition radiation occurs if a relativist particle (large \mathbf{y}) passes the boundary between two media with different refraction indices $\left(\mathrm{n}_{1} \neq \mathrm{n}_{2}\right)$ [predicted by Ginzburg and Frank 1946; experimental confirmation 70ies]
- Effect can be explained by rearrangement of electric field
- A charged particle approaching a boundary creates a dipole with its mirror charge

The time-dependent dipole field causes the emission of electromagnetic radiation

$$
S=\frac{1}{3} \alpha z^{2} \gamma \hbar \omega_{P} \quad\left(\hbar \omega_{P} \approx 28.8 \sqrt{\frac{Z \rho}{A}} e V\right)
$$

Transition Radiation

- Typical emission angle: $\theta=1 / \gamma$
- Energy of radiated photons: $\sim \gamma$
- Number of radiated photons: αz^{2}
- Effective threshold: $\gamma>1000$
- Use stacked assemblies of low Z material with many transitions and a detector with high Z

Slow signal

The ATLAS Transition Radiation Tracker

- The TRT main element are gas filled tubes ($\mathrm{d}=4 \mathrm{~mm}, 40$ 150 cm long) to measure precisely the position

Polypropylene fibers fill the gap between straws to distinguish e^{-}from hadrons

4 mm

370,000 drift tubes. Eac layer of straws interleaved with polypropylene as a radiator
D. Bortoletto, Lecture 1

ATLAS Transition radiation tracker

Collider Detectors Approaches

