Flavour physics at a hadron collider: part II

- Here you can see the CKM constraints, the main ones we will look at:
- $\Delta \mathrm{m}_{\mathrm{s} / \mathrm{d}} \mathrm{B}_{(\mathrm{s})}$ oscillation frequencies (loop level).
- $\sin (2 \beta)$ from CPV in $\mathrm{B}^{0}->\mathrm{J} / \psi \mathrm{K}_{s}{ }^{0}$ (loop level)
- γ from B \rightarrow Dh decays (tree level).
- $\left|\mathrm{V}_{\mathrm{ub}}\right| /\left|\mathrm{V}_{\mathrm{cb}}\right|$ from semileptonic decays (tree level).
- Then we will go into some direct CPV (including charm physics).

Reminder:Oscillations (mixing)

- Meson oscillations occur when the mass eigenstates are not equal to the flavour eigenstates.
- Physical states propagate as a superposition of flavour eigenstates.

$$
\left|B_{H, L}\right\rangle=p\left|B^{0}\right\rangle \mp q\left|\bar{B}^{0}\right\rangle
$$

- Get oscillations in all neutral meson systems.

- The oscillation frequency is related to the CKM elements involved in the mixing diagrams.
- Measurements of meson oscillations is sensitive to new physics.

Oscillations as a tool for CPV

- Oscillations give access to CP violation in two ways:
- They provide a second path for a meson to decay into a particular final state (interference between mixing and decay).

- You can get CPV in oscillations themselves via the interference between two contributions of the mixing amplitude.

CP -violation in mixing

The measurement of $\sin (2 \beta)$

- The measurement of $\sin (2 \beta)$ is a CPV measurement in the interference between mixing and decay.
- 'Golden mode' is the decay $B^{0} \rightarrow J / \psi K_{s}^{0}$

- You can then get interference between mixing and decay amplitudes.

$B^{0} \rightarrow J / \psi K_{s}^{0}$ analysis

- The idea is to measure the asymmetry between a B^{0} and a $\overline{B^{0}}$ decaying into the same final state.

$$
a_{f}(t)=\frac{\Gamma\left(\bar{B}^{0} \rightarrow f\right)-\Gamma\left(B^{0} \rightarrow f\right)}{\Gamma\left(\bar{B}^{0} \rightarrow f\right)+\Gamma\left(B^{0} \rightarrow f\right)} \approx C \sin (2 \beta) \sin (\Delta m t)
$$

- Here is the signal yield asymmetry as measured as a function of the decay time.

- As with the oscillation frequency, the tricky part is to determine the flavour of the B meson.

$\sin (2 \beta)$ and the unitarity triangle

- One can relate $\sin (2 \beta)$ to the CKM elements of the diagrams involved.

- The β is the same one as in the unitarity triangle!

- Measuring $\sin (2 \beta)$ is therefore a crucial part of validating the unitarity of the CKM matrix.
- It was the B factories first measurements of this which lead to the 2008 Nobel prize for Kobayashi and Maskawa.

Tree level constraints

- Both the oscillation frequency and $\sin (2 \beta)$ are highly sensitive to NP, but need tree level constraints to compare to - turns out these are less precise than the loop level measurements.
- Heres the UT constraints for only tree level decays from 2010: Plenty of room for NP to hide!

- There is therefore a huge motivation to improve these constraints to provide a more precise SM benchmark for the NP sensitive (loop-level) measurements.

Measuring the CKM angle γ

- The CKM angle γ is given by, which is the phase of V_{ub}.

$$
\gamma=\arg \left[-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right]
$$

- Access this phase through the interference between V_{cb} and V_{ub} decay amplitudes.

- As the CKM phase is CP violating, the CP asymmetry of these decays is sensitive to the angle.
- Anyone notice possible complication here?
- One decays into a D, the other into a \bar{D}.

The GLW method

- Simplest way to get γ is to reconstruct the D mesons in CP eigenstates, known as the GLW method.
- Then you still get interference even if one gives a D and the other a D.
- The CP asymmetry is then sensitive to γ by: $A_{C P}=\frac{ \pm 2 r_{B} \sin \left(\delta_{B}\right) \sin (\gamma)}{1+r_{B}^{2} \pm 2 r_{B} \cos \left(\delta_{B}\right) \cos (\gamma)}$
r_{B} : ratio of V_{ub} and $V_{c b}$ decay amplitude magnitudes. δ_{B} the strong phase difference between the two.
- Good D decay candidates? D-> \quad and $D —>K K$ pretty good - fully charged final states.

- CP violation quite large ($\sim 15 \%)$, but is there any way to enhance it further?

The ADS method

- Counterbalance suppression of the two amplitudes by reconstructing the D^{0} meson into $\mathrm{K}^{+} \pi^{-}$

$A_{C P}=\frac{2 \kappa r_{D} r_{B} \sin \left(\delta_{B}+\delta_{D}\right) \sin (\gamma)}{r_{D}^{2}+r_{B}^{2}+2 \kappa r_{B} r_{D} \cos \left(\delta_{B}+\delta_{D}\right) \cos (\gamma)}$

- As r_{D} and r_{B} are of similar size, this maximises the $C P$ asymmetry - look at the difference here!

The Dalitz plot

- The next method is known as the BPGGSZ method, and uses the Dalitz plot technique:
- Consider the three body decay B->abc. If the decay products are spin-0, then the phase-space of the decay is entirely described by two mass combinations mab^{2} and mac^{2}.

$$
M_{B}^{2}+M_{a}^{2}+M_{b}^{2}+M_{c}^{2}=m_{a b}^{2}+m_{a c}^{2}+m_{b c}^{2}
$$

- Two-dimensional scatter plot then encodes the entire decay kinematics.

- Resonances then show up as bands on this plot.
- Spin structure determines shape across these bands.
- Dip in the middle classic signature for spin 1 resonance. $\phi(1020) \rightarrow K^{+} K^{-}$

Why is it important for CPV?

- If the system is fully described by this plot, then overlapping resonances will interfere with each other.
- This again provides us with two paths in which to be sensitive to CPV in the decay amplitude.
- Two approaches.
- Model independent: Bin the Dalitz plot and calculate ACP.
- Little model dependence.
- Difficult to interpret, lose sensitivity.

- Model dependent: Bin the Dalitz plot and calculate ACP.
- Can interpret causes of ACP, get maximum sensitivity.
- Dependent on hadronic model (e.g. isobar model).

The BPGGSZ method

- Always get parameter of interest γ with strong phase differences $\delta_{B / D}$, leading to multiple solutions .
- Can break this by reconstructing the D meson in a three body final state such as $\mathrm{K}_{\text {s }} \pi \pi$.
- $D^{0} —>K_{s} \pi \pi$ contains contributions from both singly and double cabibbo suppressed combinations.

- Variation across Dalitz plot allows for more sensitivity and also to break degeneracy with hadronic nuisance parameters.

$$
A_{C P}=\frac{2 \kappa r_{D} r_{B} \sin \left(\delta_{B}+\delta_{D}\right) \sin (\gamma)}{r_{D}^{2}+r_{B}^{2}+2 \kappa r_{B} r_{D} \cos \left(\delta_{B}+\delta_{D}\right) \cos (\gamma)}
$$

- There are other methods as well (GLS, quasi-GLW ..). For more details I recommend this review

γ combination

- Several measurements with shared parameters and similar uncertainties - combination mandatory.
- Statistically complicated, e.g. sensitivity depends on central value of r_{B}.
- Both Frequentist and Bayesian approaches used and compared.

$$
\gamma=\left(65.4_{-4.2}^{+3.8}\right)^{\circ}
$$

- Recent update brings uncertainty down to 4 degrees three times lower than when we started in 2010!

- Include charm mixing/CPV in combination for the first time.

The CKM element ratio $\left|\mathrm{V}_{\mathrm{ub}}\right| /\left|\mathrm{V}_{\mathrm{cb}}\right|$

- The other big tree level CKM input is $\left|\mathrm{Vub}_{\mathrm{ub}}\right| / \mathrm{V}_{\mathrm{cb}} \mid$, which determines the length of side opposite the CKM angle β.
- Still want to use $\mathrm{b} \rightarrow>\mathrm{u}$ and $\mathrm{b} \rightarrow \mathrm{c}$ transitions as with γ, but now we are interested in the branching fractions:

$$
\mathcal{B} \propto\left|V_{x b}\right|^{2}
$$

- Why don't we just use these again?

1. Need pure $\mid \mathrm{Vcbl}_{\mathrm{cb}}$ and $\left|\mathrm{V}_{\mathrm{ub}}\right|$ decays.
2. Fully hadronic BF difficult to interpret (QCD). ${ }_{B}$
3. These decays are fairly low yields.

- The solution is to use semileptonic decays, which are of the type $H_{b} \rightarrow h \ell \nu$

How to measure |Vub| (exclusively)

- Semi-leptonic decays can be used to make precise measurements of $\left|V_{u b}\right|$.

- Factorise electroweak and strong parts of the decay:

$$
\frac{d \Gamma}{d q^{2}}=\frac{G_{F}^{2}\left|V_{u b}\right|^{2} p_{\pi}^{3}}{24 \pi^{3}}\left|f^{+}\left(q^{2}\right)\right|^{2} \longleftarrow{ }_{\text {factor. }}^{\text {QCD part encompassed by form- }}
$$

- Result: $\left|V_{u b}\right|=(3.70 \pm 0.10 \pm 0.12) \times 10^{-3}$ Uncertainty split between experimental and lattice

Lattice QCD

- Always measure product of $\left|\mathrm{V}_{\mathrm{ub}}\right|$ and form factors.
- Rely techniques such as Lattice QCD to calculate latter.
- Lattice QCD works by discretising space-time, with lattice spacing, a.
- Uncertainties best with momentum << cutoff (1/a)

Example of form factor from [1].

$\left|V_{u b}\right|$ from inclusive decays

- Forget about form factors, just measure all $b \rightarrow u \ell \nu$
- Experimentally very difficult, need fiducial cut to remove large V_{cb} background.
- Efficiency of this fiducial cut introduces model dependence, and drives systematic uncertainty.

Measurement found to be:

$$
\left|V_{u b}\right|=\left(4.25 \pm 0.12_{\exp }{ }_{-0.14}^{+0.15} \text { theo } \pm 0.23_{\Delta \mathrm{BF}}\right) \times 10^{-3} \text { PDG review }
$$

Doesn't agree with exclusive determination at all.

The IVubl puzzle

$\left|\mathrm{Vub}_{\mathrm{ub}}\right|$ at a hadron collider?

- Neutrinos are a double-edged sword.
- They are an unambiguous signal for a short distance interaction.
- They need a light-year of steel to absorb.
- These complications led to the prevailing wisdom that $\left|\mathrm{V}_{\mathrm{ub}}\right|$ could not be measured at a hadron collider.

B-fractions analysis, Phys.Rev. D100 (2019) no.3, 031102

- Isolation against additional particles to reduce and control backgrounds.
- Recent measurements with $B_{s}{ }^{0}$ and $\Lambda_{b}{ }^{0}$ decays make possible by:
- Normalisation to a V_{cb} mode to cancel production/systematics.
- Construct the so-called corrected mass, allowed to fit a peak even with missing neutrino.

Signatures

- The signal is either $a B_{s}{ }^{0}$ or $\Lambda_{b}{ }^{0}$ decaying into either a kaon or proton with the lepton pair.

Signal

Rate: 10-4

Background

Rate: 10-1

- Background dominated by V_{cb} decays, typical for a $\left|\mathrm{V}_{\mathrm{ub}}\right|$ measurement.
- Decays with $B_{s}{ }^{0}$ or $\Lambda_{b}{ }^{0}$ and complimentary with each other.

Decay	Λ_{b}^{0}	B_{s}^{0}
theory error	5%	$\sim 5 \%$
prod frac	20%	10%
BF	4×10^{-4}	1×10^{-4}
$\mathcal{B}\left(X_{c}\right)$ error	$\pm 5 \%$	$\pm 2.8 \%$
background	Λ_{c}^{+}	$\Lambda_{c}^{+}, D_{s}, D^{+}, D^{0}$

Fitting technique

- The key to determine the signal yield is to fit the corrected mass.

$$
M_{c o r r}=\sqrt{p_{\perp}^{2}+M_{p \mu}^{2}}+p_{\perp}
$$

- Corrected mass peaks at Λ_{b} / B_{s} mass if not missing any massive particles.

Corrected mass $\left[\mathrm{MeV} / c^{2}\right]$

Results

- Make two measurements at high q^{2} and one at low $q^{2 .}$
- The high and low q^{2} measurements disagree with each other by 4σ !

- As can be seen, there is also a discpreancy in $\left|\mathrm{V}_{\mathrm{cb}}\right|$..

A word on $\left|\mathrm{V}_{\mathrm{cb}}\right|$

- The comparison of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ measurements is similar to the $\left|\mathrm{V}_{\mathrm{ub}}\right|$.
- Inclusive $b \rightarrow>c$ lnu decays are compared with specific final states such as $B \rightarrow>D^{*} \ln u$.
- Analysis proceeds via simultaneous extraction of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ (from normalisation) and form factors from the shape information.

- In 2017 there was lots of discussion whether the FF model could be responsible for the discrepancy (CLN vs BGL). Still unclear.

Model-Independent Extraction of $\left|V_{\phi \mid}\right|$ from $\bar{B} \rightarrow D^{*} \overline{\mathcal{L}}$

We fit the unfolded data of $\bar{B}^{0} \rightarrow D^{+}+\tilde{u}$ Trom

A fresh look at the determination of $\left|V_{c b}\right|$ from $B \rightarrow D^{*} l v$

- New lattice result has provided some much needed input but the puzzle remains for now.

CKM progress

- What does this all add up to? Substantial progress on CKM unitarity.
- New updates on γ yet to be included.

- $\left|\mathrm{V}_{\mathrm{ub}}\right|$ and $\left|\mathrm{V}_{\mathrm{cb}}\right|$ puzzles remain barrier to ultimate precision, particularly now with 4 degree γ precision.

Direct CPV

- Consider the decay $B \rightarrow f$ and its CP conjugate $\bar{B} \rightarrow \bar{f}$.
- CPV in decay is a difference in decay rate $\left|A^{P}\right|^{2}$ and CP conjugate decay $\left|\bar{A}^{P}\right|^{2}$.

$$
A^{P}=\left|A^{P}\right| e^{\delta_{S}^{P}} e^{\delta_{W}^{P}} \sim \text { Weak phase }
$$

- With one decay amplitude, $\left|A^{P}\right|^{2}=\left|\bar{A}^{P}\right|^{2}$-> no CPV.
- With two decay amplitudes P and T :

$$
A=A^{P}+A^{T}=\left|A^{P}\right| \delta_{S}^{P} \delta_{W}^{P}+\left|A^{T}\right| \delta_{S}^{T} \delta_{W}^{T}
$$

- Then taking the difference we obtain an expression for direct CPV.

$$
|A|^{2}-|\bar{A}|^{2}=-4\left|A^{P}\right|\left|A^{T}\right| \sin \left(\delta_{\mathrm{S}}^{\mathrm{P}}-\delta_{\mathrm{S}}^{\mathrm{T}}\right) \sin \left(\delta_{\mathrm{W}}^{\mathrm{P}}-\delta_{\mathrm{W}}^{\mathrm{T}}\right)
$$

- So only non-zero CPV when both strong and weak phases different.

CP violation in $B^{0} \rightarrow K^{+} \pi^{-}$

- CP violation is maximal when the two decay amplitudes are of similar size.

$$
|A|^{2}-|\bar{A}|^{2}=-4\left|A^{P}\right|\left|A^{T}\right| \sin \left(\delta_{\mathrm{S}}^{\mathrm{P}}-\delta_{\mathrm{S}}^{\mathrm{T}}\right) \sin \left(\delta_{\mathrm{W}}^{\mathrm{P}}-\delta_{\mathrm{W}}^{\mathrm{T}}\right)
$$

- This is the case for the decay $B^{0} \rightarrow K^{+} \pi^{-}$

- Both amplitudes suppressed due to different reasons. They combine to give large direct CPV.

Seeing it in the data

- We see this in the LHCb dataset.

- See a visible difference in the yield between the decay and its CP conjugate.
- Is this consistent with the SM?

The $B \rightarrow K \pi$ puzzle

- Compare CP asymmetry between two very similar decays, $B^{0} \rightarrow K^{+} \pi^{-}$and $B^{+} \rightarrow K^{+} \pi^{0}$

- Different by over 5σ..

$$
\begin{aligned}
& A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=-0.083 \pm 0.004 \\
& A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)=0.037 \pm 0.021
\end{aligned}
$$

-Whats going on here?

Electroweak diagrams in $B \rightarrow K \pi$

- Can place gluon with photon/Z to get electroweak penguin contribution.

- Still the same. However now the B^{+}has an additional diagram.

- Is this diagram weaker or stronger than the others?

Possible explanations

- In the SM the electroweak contributions are smaller than the gluonic penguins.
- New physics in electroweak penguins?
- There is also a colour suppressed tree level diagram for the B^{+}mode.
- Amplitude magnitude would have to be bigger than the favoured version to explain the effect.
- Other modes help shed light (technically the puzzle is based on four channels not only two).

$$
A_{C P}\left(K^{+} \pi^{-}\right)+A_{C P}\left(K^{0} \pi^{+}\right) \frac{\mathcal{B}\left(K^{0} \pi^{+}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \frac{\tau_{0}}{\tau_{+}}=A_{C P}\left(K^{+} \pi^{0}\right) \frac{2 \mathcal{B}\left(K^{+} \pi^{0}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \frac{\tau_{0}}{\tau_{+}}+A_{C P}\left(K^{0} \pi^{0}\right) \frac{2 \mathcal{B}\left(K^{0} \pi^{0}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)}
$$

- One surprise is that LHCb is contributing in the neutral mode - reconstructed without a vertex!

$$
A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)=0.025 \pm 0.015 \pm 0.006 \pm 0.003
$$

CPV in charm decays

- While CPV in B mesons/kaons has long been established, it had never been seen in charm quarks.
- The tree and penguin sizes were too different: $\mathrm{A}^{\mathrm{T}} \gg \mathrm{A}^{\mathrm{P}}$

D \longrightarrow hh

- Fortunately have millions of signal.
- Therefore expect CPV to be very small.

Aside: Detection asymmetries

- If we had a perfect detector, the CP asymmetry would be given by $A_{C P}=\frac{N-\bar{N}}{N+\bar{N}}$
- In reality, there is a different efficiency for the two CP states

$$
\begin{aligned}
A_{\mathrm{raw}} & =\frac{\epsilon N-\bar{\epsilon} \bar{N}}{\epsilon N+\bar{\epsilon} \bar{N}} \\
& \approx A_{C P}+A_{\mathrm{det}}
\end{aligned}
$$

-Where does this come from?

$$
A_{D}=\frac{\varepsilon(f)-\varepsilon(\bar{f})}{\varepsilon(f)+\varepsilon(\bar{f})}
$$

- Controlled with a combination of data and simulation. We are interested in CP asymmetries at the 10-4 level - the details really matter here.

LHCb analysis

- In early 2019, we analysed our full dataset and looked for CP violation in D—>hh decays.
- In order to control detection asymmetries, compare two decays: D->KK and D->חா.

$$
\Delta A_{C P} \equiv A_{\text {raw }}(K K)-A_{\text {raw }}(\pi \pi)=A_{C P}(K K)-A_{C P}(\pi \pi)
$$

- The flavour of the D meson is determined from the charge of the excited $\mathrm{D}^{*}+$ state.

Discovery of CPV in charm

- We measured this difference to be non-zero by 5.3 standard deviations.

$$
\Delta a_{C P}^{\mathrm{dir}}=(-15.6 \pm 2.9) \times 10^{-4} \quad \text { First time discovered! }
$$

Interpretation

- Interpretation is complicated by QCD uncertainties (size depends on strong phase).
- The charm quark is not very heavy - QCD is strong. Non-perturbative techniques are needed.

New physics explanation

News \& Views | Published: 08 May 2019

pARTICLE PHYSICS
Charming clue for our existence
Alexander Lenz \boxtimes
Nature Reviews Physics 1,365-366(2019) | Cite this article
$\mathbf{9 7}$ Accesses | $\mathbf{1 0}$ Altmetric | Metrics

The Large Hadron Collider beauty experiment (LHCb) collaboration announced the observation of charge parity (CP) violation in the decays of the D^{0} meson, the lightest particle containing charm quarks, which might provide clues to why there is more matter than antimatter in the Universe and lead to a deeper understanding of the theory of the strong interaction.

QCD explanation

$S U(3)_{F}$ breaking through final state interactions and $C P$ asymmetries in $D \rightarrow P P$ decays
Franco Buccella (INFN, Naples), Ayan Paul (DESY \& Humboldt U., Berlin), Pietro Santorelli (INFN, Naples \& Naples U.)

Feb 14, 2019-20 pages

Phys.Rev. D99 (2019) no.11, 113001
DOI: $10.1103 /$ (2019-06-11)
DESY-10 Hys Revi. 99.113001
e-Print: arXiv:1902.05564 [hep-ph] | PDF
Abstract (APS)
We analyze D decays to two pseudoscalars (π, K) assuming the dominant source of SU(3) F breaking lies in final state interactions. We obtain an and $\triangle A C P$. We also make predicitions for $\delta K \pi$ and the branching fraction for the decay D $\mathrm{s}+\cdots K+K L$.
Abstract (ardiv)

Keyword(s): insp \mid Died win
 $\frac{\mathrm{CP} \mid}{\text { Auth }}$: violation $\mid \mathrm{D}:$ branching ratio $\left\lvert\, \frac{D}{\text { D }}\right.$

- Direct CPV often has interpretation issues due to the strong part needed to generate such effects.

The road to discovery is often not straight

Indirect CPV in charm

- Reminder of types of CPV:

2. CPV in the mixing $\left|D^{0} \rightarrow \bar{D}^{0} \longrightarrow \bar{f}\right|^{2} \neq \left\lvert\, \bar{D}^{0} \rightarrow D^{0} \longrightarrow \begin{aligned} & P\left(D^{0} \rightarrow \bar{D}^{0}\right) \neq P\left(\bar{D}^{0} \rightarrow D^{0}\right) \\ & \phi_{12} \equiv \arg \left(M_{12} / \Gamma_{12}\right) \neq 0\end{aligned}\right.$
3. CPV in the interference
(of mixing and decay)

- Similarly to $\sin (2 \beta)$, measure CP asymmetry as a function of time.

$$
A_{C P}(f, t) \equiv \frac{\Gamma\left(D^{0} \rightarrow f, t\right)-\Gamma\left(\bar{D}^{0} \rightarrow f, t\right)}{\Gamma\left(D^{0} \rightarrow f, t\right)+\Gamma\left(\bar{D}^{0} \rightarrow f, t\right)} \approx \underset{\text { Direct CPV }}{\nearrow}
$$

- Also parameterised as A_{Γ}, is sensitive to CPV in mixing and the decay.

Incredible precision! Consistent with no CPV

$$
\Delta Y_{K^{+} K^{-}}=(-2.3 \pm 1.5 \pm 0.3) \times 10^{-4}
$$

$$
\Delta Y_{\pi^{+} \pi^{-}}=(-4.0 \pm 2.8 \pm 0.4) \times 10^{-4}
$$

Backups

The unique opportunity of $\mathrm{B}_{\mathrm{s}}{ }^{0}$ mesons

- Another important target was to access flavour observables utilising the huge production of $\mathrm{B}_{\mathrm{s}}{ }^{0}$ mesons produced at the LHC.
- While the B factories could produce $B_{s} 0$ mesons, it was at a reduced rate and a more complicated environment compared to B^{0} and B^{+}.
- At the LHC, $B_{s}{ }^{0}$ mesons account around 10% of the production, meaning large datasets were available.
- Two golden modes were of particular focus at the start of LHCb data taking:
- Search for the ultra rare decay $B_{s}{ }^{0}->\mu \mu$.
- Measurement of the CP violating phase ϕ_{s} in $B_{s}{ }^{0}->J / \psi \phi$ decays.
- The first three flavour physics publications of LHCb were all on $B_{s}{ }^{0}$ decays.

Search for the rare decays $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$and $B^{0} \rightarrow \mu^{+} \mu^{-}$	PAPER-2011-004 arXiv:1103.2465 [PDF]	Phys. Lett. 8699 (2011) 330	12 Mar 2011
Measurement of J / ψ production in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$	PAPER-2011-003 arXiv:1103.0423 [PDF]	Eur. Phys. J. C71 (2011) 1645	02 Mar 2011
First observation of $\bar{B}_{s}^{0} \rightarrow D_{22}^{++} X^{-}-\bar{\nu}$ decays	PAPER-2011-001 arXiv: 1102.0348 [PDF]	Phys. Lett. 8698 (2011) 14	02 Feb 2011
First observation of $B_{s}^{0} \rightarrow J / \psi f_{0}(980)$ decays	PAPER-2011-002 arXiv:1102.0206 [PDF]	Phys. Lett. B698 (2011) 115	01 Feb 2011
Measurement of $\sigma(p p \rightarrow \bar{b} X)$ at $\sqrt{s}=7 \mathrm{TeV}$ in the forward region	PAPER-2010-002 arXiv:1009.2731 [PDF]	Phys. Lett. B694 (2010) 209-216	14 Sep 2010
Prompt K_{s}^{0} production in $p p$ collisions at $\sqrt{s}=0.9 \mathrm{TeV}$	PAPER-2010-001 arXiv:1008.3105 [PDF]	Phys. Lett. B693 (2010) 69-80	18 Aug 2010

The flavour problem

- Naturalness implies NP at the TeV scale.
- Flavour physics constraints imply NP at $>\mathrm{O}(100) \mathrm{TeV}$ scale

- How to reconcile these two?
- The key point is that flavour measurements always probe a combination of the coupling and energy scale. (We will see this in more detail in lecture 3).
- These energy constraints assume $O(1)$ flavour violating couplings.
- If you assume Minimal Flavour Violation (MFV), then NP is also suppressed in the same way it is in the CKM matrix.

