Flavour physics at a hadron collider: part lli

 Charm physics (mostly direct CPV).
* New physics with rare decays.

* The NAG2 experiment.
» Search for the ultra rare decay Bs0—>pp

 Semileptonic b—>sll transitions
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CPV In charm decays

 While CPV in B mesons/kaons has long been established, it had never been seen in charm quarks.

* The tree and penguin sizes were too different: AT >> AP
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) OV
) Uy )

Candidates per 0.8 MeV/¢?
)

-
)

O o
rrrrjpnriri

[
n
| | |

[
rfrri

x10°

© LHCb 13TeV
- D'—K 7t

1800

1850

—— Data
— Fit _
B Comb. backe. -

1900
m(K~m*) [MeV/c2]

. REV. LETT. 122 (2019) 211803

ratrick Owen - HCPSS2021


https://doi.org/10.1103/PhysRevLett.122.211803

Aside: Detection asymmetries

N—N
* |f we had a perfect detector, the CP asymmetry would be given by ACP = —
N+ N
* In reality, there is a different efficiency for the two CP states _ eN — EN
raw -
eN + eN

*  Where does this come from? X Acp + Age

4 = E0) =) 4, = £ —e(f) |
() + &(F) : el F) -+ S(_f) Reversed magnet polarity

@ B-field

Negatively Positively

@ B-field
Positively

Negatively
charged muon
charged muon

* (Controlled with a combination of data and simulation. We are interested in CP asymmetries at the 104
level - the details really matter here.
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Those interested can look at Angelo Carbone’s CERN seminar

LHCb analysis

* |n early 2019, we analysed our full dataset and looked for CP violation in D9—>h+h- decays.

* In order to control detection asymmetries, compare two decays: DO—>K+K- and DO —>t+1T-.

M., =A (KK)-A

I"CZW

() = A p (KK) — Aqp (7T)

raw

B
e The flavour of the D meson is determined from: [ @ Bfield B K- /-
* The charge of the excited D™+ state. I | /
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https://cds.cern.ch/record/2668391

Discovery of CPV in charm ™

* \We measured this difference to be non-zero by 5.3 standard deviations.

Aadl = (=15.6 +2.9)x10~*  First time discovered!

2001
Beauty particles:

1964
1956 Strange particles:
Parity violation CP violation in K
T.D. Lee, meson decays

C. N.Yang and J. W. Cronin,
C.S.Wu et al. V. L. Fitch et al.

CP violation in B°

s e * Presented at Moriond 2019 for the first time.

BaBar and Belle
collaborations

019
Charm particles:
CP violation in D°
meson decays
LHCDb collaboration

1963 1973

Cabibbo Mixing The CKM matrix

N. Cabibbo M. Kobayashi and
T. Maskawa

* The conference organisers were kind
enough to provide a celebratory drink to
the LHCb members.
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https://doi.org/10.1103/PhysRevLett.122.211803

Interpretation

* |nterpretation is complicated by QCD uncertainties (size depends on strong phase).

 The charm quark is not very heavy - QCD is strong. Non-perturbative technigues are needed.

, , QCD explanation
New physics explanation
SU (3)r breaking through final state interactions and C P asymmetries in D — PP decays

Franco Buccella (INFN, Naples), Ayan Paul (DESY & Humboldt U., Berlin), Pietro Santorelli (INFN, Naples & Naples U.)

News & Views | Published: 08 May 2019
Feb 14, 2019 - 20 pages

PARTICLE PHYSICS Phys.Rev. D99 (2019) no.11, 113001
. . 2019-06-11
Charming clue for our existence DOL: 10.1103/PhysRevD.9.11300:

DESY-19-025, DESY 19-025
e-Print: arXiv:1902.05564 [hep-ph] | PDF

Alexander Lenz 4
Abstract (APS)

. . : . . We analyze D decays to two pseudoscalars (11,K) assuming the dominant source of SU(3)F breaking lies in final state interactions. We obtain an
Nature Reviews PhySICS 1 365—366(2019) | Cite this article excellent agreement with experimental data and are able to predict CP violation in several channels based on current data on branching ratios
, : and AACP. We also make predictions for 8K1r and the branching fraction for the decay Ds+—K+KL.

97 Accesses | 10 Altmetric | Metrics Abstract (arXiv)
Note: 21 pages. Updated with the 2019 measurement of AAcp from LHCb

The Large Hadron COllider beauty experiment (LHCb) COllaboration Keyword(s): INSPIRE: symmetry breaking; flavor | symmetry breaking: SU(3) | final-state interaction | D: decay | decay: asymmetry | asymmetry:
CP | CP: violation | D: branching ratio | Dis+ --> K+ KO(L)

announced the observation of charge parity (CP) violation in the Author supplied: Electroweak Interactions

decays of the D° meson, the lightest particle containing charm

quarks, which might provide clues to why there is more matter than

j;‘:;j;j;;j::j‘;f;‘jj;:j:;*;jfa“t°a““P"“m‘m‘and‘ng"f‘he * Direct CPV often has interpretation issues due to the strong part
needed to generate such effects.
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The road to discovery Is often not straight

n-tagged (3 fb) __¢ Phys. Rev. Lett. 116 (2016)

u-tagged (3 fb™) ,,_,_, JHEP 07 041 (2014)
u-tagged (1 fb) Phys. Lett. B723 33 (2013)

n-tagged (0.62 fb™) Phys. Rev. Lett. 108 (2012)

-1 05 0 05 1
AAcp [ 7]
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Indirect CPV in charm

 Reminder of types of CPV-: 1. CPV in the decay \Do_._‘<f|2¢ 50+‘<f|z g e U |
P 12 0 2 | N

2. CPV in the mixing ‘ DO-»-‘-».(J‘" # D0+‘.12-.:<f
3. CPV in the interference . 2
(of mixing and decay) ‘ D""“(f+ DO"“’"("F) 75

* Similarly to sin(2[3), measure CP asymmetry as a function of time.

P(D' - D% # P(D° - DY
¢, = arg(M,/T',) #0

| ' 2
@ @@

I(DY— f.t)—T(D°— f.t t
AC’P(f; t) — q_‘( f ) —_1(_ f ) ~ CL;:Z: 4+ AYf
'(DV— ft)+T(D°— f 1) y T DO
Direct CPV
* Also parameterised as Ar, is sensitive to CPV in mixing and the decay. ARXIV:2105.09889

,,,,,,,,,,,,,,,, Incredible precision! Consistent with no CPV
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v ] AYgig- = (=23+1.54+0.3) x 107*

AY i =(—4.04+28+0.4) x 107

vvvvvvvvvvvvvvvv

—
W

I
S
N
llllll lll]ll
1
O
N

I
O
N

1

|

Asymmetry [%]
-
-{
|
Asymmetry [%]
-
LTI
;+
|

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

8 Patrick Owen - HCPSS2021


http://arxiv.org/abs/2105.09889

Flavour changing neutral currents

* Decays which are either highly suppressed or forbidden in the SM are highly sensitive to new physics.

 The canonical example are flavour changing neutral currents (FCNCs). Examples that we will look at
are s—>d and b—>s transitions.

 FCNCs have played a big part in our construction of the SM.

sinbe W~ ) cosdc W~ _
S >\ N\ \N\N—> u S >— N\ N\N\NP—>—— u
K’ uy Av, K’ cY AV,
d —<— v ve— N d «— O\ N\N\N\N— +
U .
cosbc W' -S1n0 A .

 The smallness of K.°—>p+p- led to the GIM mechanism and the prediction of the charm
quark years before it was discovered.

 Can FCNCs do the same again but with new physics?
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B mesons vs Kaons

* Let’s compare FCNCs between B meson decays and kaons

—10
B ~ 10—6 5B~ 10

 Kaons much more suppressed due to CKM elements involved.

 Why do we reconstruct charged leptons for B meson decays but neutrinos for the kaon?
* Unfortunately decays such as K+ — n7¢7¢~ are dominated by long distance contributions.

* B decays still mostly short distance, even with charged leptons.

 Thedecay K™ — 7 v can be predicted with good precision in the SM.  B(K* — 7tww) = (8.44+1.0) x 10~
[Buras et al., JHEP 1511 (2015) 033]
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The NAG62 experiment

» Experiment dedicated to a precise measurement of the K™ — # v branching fraction.

® Key features: (Magnetﬁ:TSI:;gXYrometer) (Ho%l;ls?g:es)
X [m]
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* Precise kinematic constraints. I k™
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https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1007%2FJHEP11%25282020%2529042&v=27964815

LateSt reSUItS 10.1007/JHEP06(2021)093

* Select signal region kinematically to avoid main backgrounds.

* Observation of 20 events with 7 background expected.

* Evidence for signal at the level of 3.40.
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* Most precise value to date: BR(K' — 77 vi) = (10615 |stat = 0.94ys¢) x 1071 and compatible with SM.

* Run Il will be important for even more precise defgrmination. Satrick Owen - HOPSSH021


https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1007%2FJHEP06%25282021%2529093&v=bf8f305a

b—>s transitions

* The first b—>s transition was discovered in 1993 by the CLEO collaboration.
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il ] Ks'rr-y il B
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« b—>sy transitions difficult at hadron collider due to neutral photon.
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https://doi.org/10.1103/PhysRevLett.118.021801
https://doi.org/10.1103/PhysRevLett.123.031801

b — sll transitions

The idea is that because these are loop suppressed, NP can compete quite easily with the
SM decay amplitude.

SM NP
h—> U s b -
t LQ
v/ Z a i< o
Vs S

If NP couples strongly and is light enough, it will significantly alter the behaviour compared to the
SM expectation.
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The ultrarare decay B, — "~

» When LHCD started taking data BY — 11~ was THE flagship measurement of the experiment.

» Helicity and GIM suppressed, b ! b W ot
resulting in a SM BF of
Bg {3 Y Vi
BB - pTu ey = (3.66 +£0.14) x 10~
[JHEP 10 (2019) 232] S > > B
W= f

 Suppressed to the level of rare kaon decays, and very well predicted, a golden channel for new physics.

* The initial focus on new physics was on scalar NP breaking the helicity suppression (e.qg.
2HDM with large tan(f3)).

<«
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One important ingredient: fs/fq

All branching fraction measurements in LHCb are normalised to a known decay mode.

The most precise branching fractions are measured by the B-factories - B+ and B9 decays.

Measuring Bs® decays therefore requires the production fraction ratio fs/fa. Two ways:

Semileptonic decays

Hadronic decays

Use equality of partial widths (from HQET) and
compare semileptonic decay rates from Bsand
BY+ decays.

B, and Ag Fractions
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B-fractions analysis, Phys.Rev. D100 (2019)
no.3, 031102

16

« Compare Bs®—>Dst11-and BO—>D-1t+ decays

DY

* Ratio assuming SU(3) is

O]

fp+

B(BY— Dfn~)
B(B°— D—nt)

fpj

Perhaps there is also a puzzle here too:

10.1140/epjc/s10052-020-08512-8
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https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1140%2Fepjc%2Fs10052-020-08512-8&v=2fe88c6f

Background reduction

* Main background arises from so-called combinatorial background: Accidental combinations of
two muons from different decays.

Combinatorial Signal
o) = | ' ' ' | ' ' ' | ' ' ' | -
© - . -
/ = 10E Preliminary
'U o
QO
Z) 1 S S S & & &
E
............ ‘ B - $5 107!
\ Z
10~
LHCb ——
) 6 fb- = +
107 —e— Combinatorial +
—e— Weighted B! — u*u- MC
10_4...|...|...|...|...
0 0.2 04 0.6 0.8 1
BDT

* (Other specific backgrounds include b—>u semileptonic decays and misidentified charmless
decays.
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Latest results

Latest results with full run 1l data includes precise fs/fa combination
filfy (7 TeV) = 0.239 £ 0.008, f,/f; (13 TeV) = 0.254 +0.008 [LHCb-PAPER-2020-046]

_ I 0.6 ATLAS, CMS, LHCb - Summer 2020
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v 401 9 fiy — Toul T = 05E 2011 - 2016 data =
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((:; 30 H me— 130—‘:,1171‘ ¥ +: 04 :_ _:
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:E:: 10 = NNt o LT S Combinatorial _: m é g
o : 1. i“ _l + il 01 i) —
receiibonse shang i ] I - -
0 F_. . 0, e ¥ St 70 o ‘“‘1"*‘?4:" ?F‘cvf; 0 L \. .\ | Y
L. 4 - : : 5 . . i : ] 1 2 95
>000 5500 6000 ATLAS-CONF-2020-049]  B(B; = u*u™) (107)

m,.,- [MeV/c?)

Results consistent with SM, but combination with ATLAS/CMS ~ 2 o below SM prediction.

 Combination to be updated with new fs/fq and latest LHCb result.
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http://arxiv.org/abs/2108.09284

A long history - still room for NP!

or BF measurement
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Semileptonic b — st/

 Example decays should result in low energy hadrons in order to get good theory predictions.

]
* e.Q. J/9(15)

. BT > Ktutu

dI’
— dg?
. A) — At | | ,
) ey ey Cy” ana Ci
O L interference Long Fiiste_:nce -
contributions from CC
° BS % ¢/’L M abot/eo;?en charm((
threshold
.BY - K*Ou T
4 [m(p)]? —3q°

(et spikes in the distribution, typically we veto these so that we are dominated by the
semileptonic decay.
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Branching fraction

Is NP affecting the rate of these decays?

Measure the branching fraction as a function of g=.

400

200

Candidates / ( 10 MeV/c?)

5200 5400 5600
m(Kt utn) [MeV/c?]

Take the most experimentally appealing signature (muons and charged hadrons).
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Normalisation

At LHCb we normalise to the corresponding J/p decay mode.

dB  N(B— KWutp™) e(B— JWHK®) B(B— JWpKNB(JW — utyp)

di?~ N(B— JWK®) &(B— KOputu-) (o — i)

min

This vastly simplifies systematic uncertainties, as both signal and normalisation have the same
final state.

But: we are limited by the uncertainty on B(B — J/yK™)

Good information for B+ and B% mesons from B-factories, for Bs® and Aw? branching fractions we
have to do a bit more work.
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BO N K*O’u—l—lu—

JHEP 02 (2016) 104
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Branching fraction results

B—|— N K+M+M
JHEP 06 (2014) 133

Bl .CSR Lattice —e—Data
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notable exception of A} — A%~

s = ouT T

However, this one appears to be a problem with the

normalisation: 10.1103/PhysRevD.101.035023
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https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.101.035023&v=0b6f4a66
http://arxiv.org/abs/2105.14007
https://doi.org/10.1007/JHEP06(2014)133

Beyond branching fractions

If NP Is indeed changing the branching fractions of these decays, expect it also to change
the angular distribution.

Boost into the rest frame of the B,
and measure these angles for every
sighal candidate.

The main decay isB — K*u™u~, whynotB — Kutpu~orB. — ¢utp=?
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First we write down the PDF

The B° — k*9¢t¢—angular distribution can be written down as follows

(1 — FL) Sin2 (9[( -+ FL C082 9[(

A +T)/d¢? dg2dQ 32w
+1(1 — Fy) sin® Ok cos 26,

1 dYr'+T) 9 P
4
— F}, cos? O cos 20, + S5 sin® Ok sin® 6; cos 2¢
+.5, sin 20 g sin 26, cos ¢ + Ss sin 20 sin 6; cos ¢
—|—§AFB sin® @k cos @, + Sy sin 20k sin §; sin ¢

+,Sg sin 20 sin 26; sin ¢ + Sy sin” O sin® ; sin ng}

Probe observables such as the forward-backward asymmetry

. . SN BY
(Ar) and and the fraction of longtitundal polarisation of the K* (FL)

i
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Need to correct for angular acceptance

The requirements that the decay is reconstruction will bias the angular distribution.

[
1 I I

Relative efficiency

o
in

-7 LHCb
-/ simulation

This is corrected using simulation.
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Candidates / 5.3 MeV/c?

Candidates / 0.1 & rad

Then we fit the distribution

Fit the 4D distribution of mass, three angles in bins of g2.
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Candidates / 21 MeV/c?

Angular discrepancy

Cancel leading form factor uncertainties by constructing ‘optimised observables’ (P observables).
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Discrepancy just below the J/ peak. Combined significance is around 3.30.
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People wrongly assume this only comes from Ps. Tensions in Arg and Fr all point in the same direction.
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https://doi.org/10.1103/PhysRevLett.125.011802

Coherent pattern?

If the Ps’ discrepancy is due to NP, it would also cause the branching fractions to be
lower than the SM.

JHEP 2014) 1
ARXIV:2105.14007
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https://doi.org/10.1007/JHEP06(2014)133
http://arxiv.org/abs/2105.14007

A SM complication

Unfortunately, there is also a SM contribution which can negatively interfere with the
semileptonic amplitude.
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\ / Blake et al, Eur. Phys. J. C (2018) 78: 453

This contribution is very difficult to calculate as it is fully hadronic.
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Handles with data

We have tried experimentally to control this in B — Ku™ u~ decays.

Eur. Phys. J. C77 (2017) 161
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No big effect from charmonium resonances seen, but model does have some assumptions
which are being tested for next round.

Other approaches to be tested soon (e.g. arXiv:1707.07305) will help clarify this issue.
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https://doi.org/10.1140/epjc/s10052-017-4703-2
https://arxiv.org/abs/1707.07305

What If it can’t be solved?

* |f we can't figure out these hadronic effects, can we cancel them somehow?

Test lepton universality!!!
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