Flavour physics at a hadron collider: part IV

- Lepton universality tests R_K and R_{K^*} .
- Effective field theories.
- Lepton universality tests in b > clnu transitions. \bullet
- What does this all mean?

Patrick Owen

01/09/21

Reminder: Coherent pattern? If the P_5 ' discrepancy is due to NP, it would also cause the branching fractions to be lower than the SM.

ARXIV:2105.14007

Patrick Owen

Something appears to be negatively interfering with the SM b->sll decay amplitude, with a vector like coupling to the leptons.

Cancel theoretical uncertainties via tests of lepton universality.

Accidental symmetries

- Noether's theorem: Symmetries translate to conservation laws.
 - Lorentz invariance: Conservation of four-momentum.
 - Global phase: Conservation of charge.
- theory.
- Let's look at the following processes to see which could be interesting for new physics:

$$\mu^+ \to \pi^+ \bar{\nu_{\mu}} \qquad \qquad \mu^+ \to$$

Violation of four-momentum: Protected by Lorentz invariance. **Violation of charge conservation:** Protected by U(1) symmetry.

- very sensitive to theories beyond the SM.

Momentum/charge conservation are therefore **protected** by the fundamental symmetries of the

 $\rightarrow e^- \bar{\nu_e} \bar{\nu_\mu}$

 $\mu^+ \rightarrow e^+ e^- e^+$

Violation of lepton flavour violation: Protected by....????

The lepton flavour symmetries in the Standard Model are accidental. Testing them is therefore a

Some symmetries of interest: Lepton flavour, lepton universality (today) and lepton number.

Lepton universality

Lepton universality is an accidental symmetry in the Standard Model,

 $R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \to K^{(*)}e^+e^-)}$

• Muon and electron masses small compared to b-quark: $R_{K(*)} \sim 1$

The unbearable lightness of electrons

h

Electrons are 200 times lighter than muons ullet-> undergo bremsstrahlung more often.

P

- Two effects from this: lacksquare
 - Worse mass resolution for electrons. lacksquare
- Worse efficiency for electrons.

Credit: M. Atzeni

6

Bremsstrahlung issues

•

HCPSS2021

7

Bremsstrahlung issues

• Easier to confuse signal with 'partially reconstructed' background.

How to control this

e 2: Candidate invariant mass distributions. Distribution of the invariant mass $(K^+\ell^+\ell^-)$ for candidates with (left) electron and (right) muon pairs in the fight of the determined by scanning the s. The fit projection is superimposed. In the resonant-mode distributions with the efficiencies fixed to their fitted values. onents are too small to be visible. 168

The determination of the $r_{J/\psi}$ ratio requires control of the relative selection efficiencies Patrick Owen¹⁶⁹ for the resonant electron and muon modes, and does not therefore benefit from the s (see Methods) and data-taking periods are taken into account in these constraints systematic effects in the double ratio used to measure R_K . Given the scale

HCPSS2021

How to control this

onents are too small to be visible.

- Recent update combines the full dataset collected so far by LHCb to measure R_{K} .
 - 3.1 standard deviations away from the SM prediction of unity.
- Also see deviations of around 2.2-2.4 σ in the ratio R_{K*} only using run 1 data so updates. lacksquare

Latest results

Effective field theory

- We lacksquare
- Similarly to the β-decay we can integrate out the heavy The idea is a generalisation of Fermi's theory of weak decays: 1: β -de
- Marsha
- ark lang
- been in
- tion of t
- id electro
- at the fo
- e inclusio

- This results in an effective hamiltonian, written as a combination of the short of the short $\mathcal{H}_{eff} = -\frac{1}{\sqrt{2\pi}} V_{ts}^* V_{tb} \sum_{i=1}^{n} [C_i \mathcal{O}_i + C_i' \mathcal{O}_i]$ encoding info of the short

ries (EFTs).

 $\mathcal{M} = \frac{g_L^2}{2} \bar{x}(k_3) \bar{\sigma}_{\rho} x(p) \frac{1}{q^2 - m^2} \bar{x}(k_1) \bar{\sigma}_{\rho} y(k_2) \qquad \mathcal{M} \approx -\frac{g_L^2}{2m^2} [\bar{x}(k_3) \bar{\sigma}_{\rho} x(p)] [\bar{x}(k_1) \bar{\sigma}_{\rho} y(k_2)] {}^{\mu} \frac{1}{1} + \mathcal{O}(q^2/m_W^2)]$ • Model independent description in effective field theory

distance physics

O_i four-fermion operators •

TOTH TACLOT IS COMPALED WILL, E.Y., TALLEE YED

ich, together with the CKM matrix elements, describe the strength given Commonters define CL=C9-C10, defined on the sentend of the sentend of the sentend of the sentence of the own as Operator Product Expansion (OPE), of effective vertices ^{ffective coupling constants C_i . • Primed coefficients are right-handed coupling to the quarks: Suppressed by m_s/m_b in the SM (null tests).}

- O₇ gives a long distance contribution to $b \rightarrow sll$ via the photon.
- O_{9,10,S,P} can be different for different lepton flavours.

ulleteasily exceeding the conventional 5σ threshold.

		$b \rightarrow s \mu \mu$		LFU, $B_s \to \mu \mu$		all rare B decays	
_	Wilson coefficient	best fit	pull	best fit	pull	best fit	pull
NP errors	$C_9^{bs\mu\mu}$	$-0.87^{+0.19}_{-0.18}$	4.3σ	$-0.74^{+0.20}_{-0.21}$	4.1σ	$-0.80^{+0.14}_{-0.14}$	5.7σ
	$C_{10}^{bs\mu\mu}$	$+0.49^{+0.24}_{-0.25}$	1.9σ	$+0.60^{+0.14}_{-0.14}$	4.7σ	$+0.55^{+0.12}_{-0.12}$	4.8σ
	$C_{9}^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$	$-0.60^{+0.13}_{-0.12}$	4.3σ	$-0.35^{+0.08}_{-0.08}$	4.6σ	$-0.41^{+0.07}_{-0.07}$	5.9σ

ulletsignificance of around 40. D. Lancierini, G. Isidori, PO, N. Serra

Global $b \rightarrow s\ell^+\ell^-$ fits

Global b - sll fits show that all discrepancies are in consistent within the EFT approach, with significances

Of course some measurements rely on hadronic uncertainties - most conservative approach possible results in

Patrick Owen

Large rate of charged current decays allow for measurement in semi-tauonic decays.

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)} \quad \cdot \quad \text{Form ratio}$$

$R(D^*)$

atio of decays with tau and lighter generations. QCD/expt uncertainties (90% of $R(D^*)$, 50% of R(D)).

R(D^{*}) sensitive to any physics model favouring 3rd generation leptons (e.g. charged Higgs).

Who has made measurements

Three experiments have made measurements •

* during run 1 of the LHC Patrick Owen

	Belle	LHCb			
	O(700M)	O(800B)*			
3	$\Upsilon(4S) \to B\bar{B}$	$pp \rightarrow gg \rightarrow b\overline{b}$			
	Phys.Rev.D 92, 072014 (2015)	Phys.Rev.Lett.115, 111803 (2015)			
	Phys. Rev. D 94, 072007 (2016)	Phys. Rev. Lett. 120, 171802 (2018)			
	l Phys. Rev. D 97, 012004 (2018)				

Tau decays

 $\tau \to \mu \nu \nu$

Large statistics

Efficiency largely cancels with muonic mode

 $B \to D^*(\tau \to \mu \nu \nu) \nu$ VS $B \to D^* \mu \nu$

Tau decay well understood

I will start with the measurements using $au
ightarrow \mu
u
u$

Patrick Owen

 $\tau \to 3\pi\nu$

More kinematic information

Precise tau flight information

No background from muonic modes

 $\tau \to \pi \nu$

Good polarimeter

Tau decay well understood

The problem with neutrinos

- At least two neutrinos in the final state (three if using •
 - No sharp peak to fit in any distribution: ●

Difficult to reconstruct B rest frame (used • to discriminate signal and backgrounds).

Patrick Owen

Things don't get much worse

In the end $B \to D^{(*)} \mu \nu$ is not such a problem.

Patrick Owen

Reconstruction at the B-factories

At B-factories, gain a lot information using a 'tagging' technique. •

Belle II's new algorithm improves things by a factor over a factor 2.

- Cleanest is to fully reconstruct hadronic decays: ε ~ 0.1%.
 - Over 2000 final states are reconstructed. ●
- Can also use semileptonic decays: $\varepsilon \sim 0.2\%$.
- Better efficiency but information is lost. •

Hints of an excess?

All experiments see an excess in the number of $B \to D^* \tau \nu$ candidates.

Patrick Owen

Flight distance cut

- Huge background from $B \to D^{(**)} 3\pi X$ •
- •

Signal fit

Phys. Rev. Lett. 120, 171802 (2018)

$\underset{k_{had}}{Results} = \frac{BR(B^{0} \rightarrow D^{*-}\tau^{+}v_{\tau})}{\bar{C}\sigma Rntoiners ignal^{+}} yie \bar{I}dy (efficiencies) a review formal rinto x termal r$

$$K_{had}(D^*) = \frac{BR(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)} = \frac{N}{N(e^{-1})}$$

$$R(D^*) = K_{had}(D^*) \times \frac{BR(B^0 \rightarrow D^{*-}\pi^+\pi^-\pi^+)}{BR(B^0 \rightarrow D^{*-}\mu^+\nu_{\mu})}$$

• Dominant systematics from external BFs, efficiency corrections and background shapes. $R(D^*) = K_{had}(D^*) \times \frac{BR(B^0)}{DD(D^0)}$

HCPSS2021

• Three different experiments see an excess in the number of semitauonic candidates.

Is there any connect between these anomalies and the R_{K^*} ones?

Hints of an excess

Different flavours of EFTs

We are used to integrating out everything above the B/D mass.

- WET/LEFT: Integrate W/Z/top out.
- SMEFT/HEFT: Integrate everything above SM scale.

The flavour anomalies in in SMEFT

The C₉ and C₁₀ in WET can be matched to SMEFT operators. \bullet

$$2\mathcal{N} C_{9}^{bs\ell_{i}\ell_{i}} = [C_{qe}]_{23ii} + [C_{lq}^{(1)}]_{ii23} + [C_{lq}^{(3)}]_{ii23} - \zeta c_{Z},$$

$$2\mathcal{N} C_{10}^{bs\ell_{i}\ell_{i}} = [C_{qe}]_{23ii} - [C_{lq}^{(1)}]_{ii23} - [C_{lq}^{(3)}]_{ii23} + c_{Z},$$

Can then relate the R_D and R_{K^*} anomalies.

What could this all mean?

- We have two sets of anomalies in charged and neatral current semileptonic B decays.
- They both point towards a violation of lepton universality.
- Possible to explain both anomalies with a single new particle (leptoquark) of around 2TeV mass.

SM diagrams

Huge consequences! Motivation for more measurements is clear.

Lepton flavour violation

- Lepton universality violation naturally implies lepton flavour violation.

Getting close to expected sensitivity for well motivated models (particularly with the τ).

Sheldon L. Glashow, Diego Guadagnoli, Kenneth Lane

If the anomalies are true, eventually expect to see decays such as $B^+ - > K^+ e^\pm \mu^\pm$ and $B^+ - > K^+ \tau^\pm \mu^\pm$.

What's next?

- We have not yet fully exhausted the current dataset at LHCb. Upcoming measurements:
 - Update of R_{K^*} with the full run II dataset.
 - Measurement of $R_{K(*)}$ in the high q^2 region.
 - Measurement of new R ratios with different hadron species ($R_{K\pi}$, $R_{K\pi\pi}$, R_{φ} , R_{D} , $R_{J/\psi}$)
 - Angular analysis of $B^0 K^{*0}e^+e^-$ decays.
 - Lepton universality tests with baryons (Λ_b baryons).
 - Searches for $b \to s \tau^+ \tau^-$
 - + many more ...
- Exciting times to be on LHCb!

