Flavour physics at a hadron collider: part IV

- Lepton universality tests R_{k} and $\mathrm{R}_{\kappa^{*}}$.
- Effective field theories.
- Lepton universality tests in b->clnu transitions.
- What does this all mean?

Reminder:Coherent pattern?

- If the $P_{5}{ }^{\prime}$ discrepancy is due to NP, it would also cause the branching fractions to be lower than the SM.

- Something appears to be negatively interfering with the SM b>sll decay amplitude, with a vector like coupling to the leptons.
- Cancel theoretical uncertainties via tests of lepton universality.

Accidental symmetries

- Noether's theorem: Symmetries translate to conservation laws.
- Lorentz invariance: Conservation of four-momentum.
- Global phase: Conservation of charge.
- Momentum/charge conservation are therefore protected by the fundamental symmetries of the theory.
- Let's look at the following processes to see which could be interesting for new physics:

$$
\mu^{+} \rightarrow \pi^{+} \overline{\nu_{\mu}}
$$

$$
\mu^{+} \rightarrow e^{-} \bar{\nu}_{e} \overline{\nu_{\mu}}
$$

Violation of charge conservation:
Protected by U(1) symmetry.

$$
\mu^{+} \rightarrow e^{+} e^{-} e^{+}
$$

Violation of lepton flavour violation: Protected by.... ????

- The lepton flavour symmetries in the Standard Model are accidental. Testing them is therefore a very sensitive to theories beyond the SM.
- Some symmetries of interest: Lepton flavour, lepton universality (today) and lepton number.

Lepton universality

- Lepton universality is an accidental symmetry in the Standard Model.

- We want to test it with so-called 'semileptonic decays'.

Neutral current: BF ~ 10-6

Charged current: BF ~ 10-2

- Compare the decay probabilities (BF) involving different charged lepton types ℓ -

The lepton universality ratios $\mathrm{R}_{\left.\mathrm{K}^{(}\right)}$

- Compare muons and electrons to see if the same discrepancies appear there.

$$
R_{K^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}
$$

- Muon and electron masses small compared to b-quark: $\mathrm{R}_{\mathrm{K}\left(^{*}\right)} \sim 1$

The unbearable lightness of electrons

- Electrons are 200 times lighter than muons $\rightarrow>$ undergo bremsstrahlung more often.

Credit: M. Atzeni

- Two effects from this:
- Worse mass resolution for electrons.
- Worse efficiency for electrons.

Bremsstrahlung issues

- Get background from the J / Ψ and $\Psi(2 S)$ leaking into signal region.

Bremsstrahlung issues

- Easier to confuse signal with 'partially reconstructed' background.

Primary Vertex

JHEP 08 (2017) 055

How to control this

$$
R_{K}=\frac{\mathcal{B}\left(B^{-} \rightarrow K^{-} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B^{-} \rightarrow K^{-} e^{+} e^{-}\right)}=\frac{N\left(B^{-} \rightarrow K^{-} \mu^{+} \mu^{-}\right)}{N\left(B^{-} \rightarrow K^{-} e^{+} e^{-}\right)} \frac{\epsilon_{e^{+} e^{-}}}{\epsilon_{\mu^{+} \mu^{-}}}
$$

Muons

How to control this

Muons

- Only the relative efficiency as a function of q^{2} is needed.
- Stringent cross-check: $r_{J \psi}=\frac{N\left(B^{-} \rightarrow K^{-} J / \psi\left(\mu^{+} \mu^{-}\right)\right)}{N\left(B^{-} \rightarrow K^{-} J / \psi\left(e^{+} e^{-}\right)\right)} \frac{\epsilon_{e^{+}}^{J / \psi}}{\epsilon_{\mu^{+}}^{J \mu^{-}}}=0.981 \pm 0.020$

Latest results

- Recent update combines the full dataset collected so far by LHCb to measure R_{k}.
- 3.1 standard deviations away from the SM prediction of unity.
- Also see deviations of around 2.2-2.4б in the ratio $R_{K^{*}}$ only using run 1 data so updates.

- Are these deviations consistent with the other anomalies and what is the combined significance?

Effective field theories

- We have a general way to connect our observables together via Effective Field Theories (EFTs).
- The idea is a generalisation of Fermi's theory of weak decays:

Full theory

$$
\mathcal{M}=\frac{g_{L}^{2}}{2} \bar{x}\left(k_{3}\right) \bar{\sigma}_{\rho} x(p) \frac{1}{q^{2}-m_{W}^{2}} \bar{x}\left(k_{1}\right) \bar{\sigma}_{\rho} y\left(k_{2}\right)
$$

Effective (Fermi) theory

$$
\mathcal{M} \approx-\frac{g_{L}^{2}}{2 m_{W}^{2}}\left[\bar{x}\left(k_{3}\right) \bar{\sigma}_{\rho} x(p)\right]\left[\bar{x}\left(k_{1}\right) \bar{\sigma}_{\rho} y\left(k_{2}\right)\right]\left[1+\mathcal{O}\left(q^{2} / m_{W}^{2}\right)\right]
$$

- This results in an effective hamiltonian, written as a combination of Wilson Coefficients and operators.

$$
\mathcal{H}_{e f f}=\frac{G_{F}}{\sqrt{2}} \sum_{i} V_{C K \lambda}^{i}\left(C_{i}(\lambda) O_{i}(\lambda)\right.
$$

- Wilson coefficients (short-distance): evaluated in perturbation theory
- Local operators (long-distance): the corresponding form factor is computed with, e.g., lattice QCD

EFTs in heavy flavour physics

- The EFT we use in heavy flavour physics assumes that NP much heavier than the b mass scale.

- Familiar operators:

- Common to define $\mathrm{C}_{\llcorner }=\mathrm{C}_{9}-\mathrm{C}_{10}$, left handed coupling to leptons: Dominant SM semileptonic contribution.
- Primed coefficients are right-handed coupling to the quarks: Suppressed by m_{s} / m_{b} in the $S M$ (null tests).

Global $b \rightarrow s \ell^{+} \ell^{-}$fits

- Global b—>sll fits show that all discrepancies are in consistent within the EFT approach, with significances easily exceeding the conventional 5σ threshold.

- Of course some measurements rely on hadronic uncertainties - most conservative approach possible results in significance of around 4σ.

Tree-level $b \rightarrow c \ell \nu$ transitions

$R\left(D^{*}\right)$

- Large rate of charged current decays allow for measurement in semi-tauonic decays.

$$
R\left(D^{(*)}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu\right)} \text {. Form ratio of decays with tau and lighter generations. }
$$

- Cancel QCD/expt uncertainties (90% of $R\left(D^{*}\right), 50 \%$ of $R(D)$).
- $R\left(D^{*}\right)$ sensitive to any physics model favouring 3rd generation leptons (e.g. charged Higgs).

Who has made measurements

- Three experiments have made measurements

	BaBar	Belle	LHCb
\#B's produced	$\mathrm{O}(400 \mathrm{M})$	$\mathrm{O}(700 \mathrm{M})$	$\mathrm{O}(800 \mathrm{~B})^{*}$
Production mechanism	$\Upsilon(4 S) \rightarrow B \bar{B}$	$\Upsilon(4 S) \rightarrow B \bar{B}$	$p p \rightarrow g g \rightarrow b \bar{b}$
Publications	Phys.Rev.Lett 109, 101802 (2012) Phys. Rev. D 88 072012 (2013)	Phys.Rev.D 92, 072014 (2015)	Phys.Rev.Lett.115, 111803 (2015)
		Phys. Rev. D 94, 072007 (2016)	Phys. Rev. Lett. 120 171802 (2018)
		Phys. Rev. D 97, 012004 (2018)	

Tau decays

$\tau \longrightarrow \mu \nu \nu$	$\tau \rightarrow 3 \pi \nu$	$\tau \rightarrow \pi \nu$
Large statistics	More kinematic information	Good polarimeter
Efficiency largely cancels with muonic mode $B \rightarrow D^{*}(\tau \rightarrow \mu \nu \nu) \nu$ vs $B \rightarrow D^{*} \mu \nu$	Precise tau flight information	
Tau decay well understood	No background from muonic modes	Tau decay well understood

I will start with the measurements using $\tau \rightarrow \mu \nu \nu$

The problem with neutrinos

- At least two neutrinos in the final state (three if using $\tau \rightarrow \mu \nu \nu)$.
- No sharp peak to fit in any distribution:

- Difficult to reconstruct B rest frame (used to discriminate signal and backgrounds).

Things don't get much worse

In the end $B \rightarrow D^{(*)} \mu \nu$ is not such a problem.

Reconstruction at the B-factories

- At B-factories, gain a lot information using a 'tagging' technique.

- Cleanest is to fully reconstruct hadronic decays: $\varepsilon \sim 0.1 \%$.
- Over 2000 final states are reconstructed.
- Can also use semileptonic decays: $\varepsilon \sim 0.2 \%$.
- Better efficiency but information is lost.

Belle Il's new algorithm improves things by a factor over a factor 2.

Signal fits

- Three main backgrounds:

$$
\begin{aligned}
& B \rightarrow D^{*} \ell \nu \\
& B \rightarrow D^{* *} \ell \nu \\
& B \rightarrow D^{*} D X
\end{aligned}
$$

BaBar [1]

- Fit variables which discriminate between muon and tauonic mode.
- LHCb fit is 3D also to lepton energy and q^{2}.
[1] Phys. Rev. D 88, 072012 (2013)
[2] Phys.Rev.D 92, 072014 (2015)
[3] Phys.Rev.Lett.115, 111803 (2015)

Hints of an excess?

- All experiments see an excess in the number of $B \rightarrow D^{*} \tau \nu$ candidates.

Fajfer et al, PRD 85 (2012) 094025

$\tau \rightarrow 3 \pi \nu$

Flight distance cut

- Huge background from $B \rightarrow D^{(* *)} 3 \pi X$
- Reduced by requiring a flight significance $>4 \sigma$.

Phys. Rev. Lett. 120, 171802 (2018)

Signal fit

Phys. Rev. Lett. 120, 171802 (2018)

- Perform 3D template fit to determine signal yield.

Results

Phys. Rev. Lett. 120, 171802 (2018)

- Combine signal yield, efficiencies and external info to determine $R\left(D^{*}\right)$.

$$
\begin{aligned}
K_{h a d}\left(D^{*}\right) & =\frac{B R\left(B^{0} \rightarrow D^{*^{-}} \tau^{+} v_{\tau}\right)}{B R\left(B^{0} \rightarrow D^{*^{-}} \pi^{+} \pi^{-} \pi^{+}\right)} \\
R\left(D^{*}\right) & =K_{\text {had }}\left(D^{*}\right) \times \frac{B R\left(B^{0} \rightarrow D^{*-} \pi^{+} \pi^{-} \pi^{+}\right)}{B R\left(B^{0} \rightarrow D^{*-} \mu^{+} v_{\mu}\right)}
\end{aligned}
$$

- Dominant systematics from external BFs, efficiency corrections and background shapes.

Hints of an excess

- Three different experiments see an excess in the number of semitauonic candidates.

- Combined deviation around 3σ.
- Is there any connect between these anomalies and the $\mathrm{R}_{\mathrm{K}^{*}}$ ones?

Different flavours of EFTs

- We are used to integrating out everything above the B / D mass.

D. Straub

SMEFT diagrams contributing to C_{9}.

- WET/LEFT: Integrate W/Z/top out.
- SMEFT/HEFT: Integrate everything above SM scale.

The flavour anomalies in in SMEFT

- The C_{9} and C_{10} in WET can be matched to SMEFT operators.

$$
\begin{aligned}
& 2 \mathcal{N} C_{9}^{b s \ell_{i} \ell_{i}}=\left[C_{q e}\right]_{23 i i}+\left[C_{l q}^{(1)}\right]_{i i 23}+\left[C_{l q}^{(3)}\right]_{i i 23}-\zeta c_{Z} \\
& 2 \mathcal{N} C_{10}^{b s \ell_{i} \ell_{i}}=\left[C_{q e}\right]_{23 i i}-\left[C_{l q}^{(1)}\right]_{i i 23}-\left[C_{l q}^{(3)}\right]_{i i 23}+c_{Z}
\end{aligned}
$$

- Can then relate the R_{D} and $R_{K^{*}}$ anomalies.
https://arxiv.org/pdf/1903.10434.pdf

What could this all mean?

- We have two sets of anomalies in charged and neatral current semileptonic B decays.
- They both point towards a violation of lepton universality.
- Possible to explain both anomalies with a single new particle (leptoquark) of around 2 TeV mass.

New physics diagram

- Huge consequences! Motivation for more measurements is clear.

Lepton flavour violation

- Lepton universality violation naturally implies lepton flavour violation.
- If the anomalies are true, eventually expect to see decays such as $\mathrm{B}^{+}->\mathrm{K}^{+} \mathrm{e}^{ \pm} \mu^{ \pm}$and $\mathrm{B}^{+}->^{+} \mathrm{T}^{ \pm} \mu^{ \pm}$.

- Getting close to expected sensitivity for well motivated models (particularly with the T).

What's next?

- We have not yet fully exhausted the current dataset at LHCb. Upcoming measurements:
- Update of $\mathrm{R}_{\mathrm{K}^{*}}$ with the full run II dataset.
- Measurement of $R_{\left.K^{(}\right)}$in the high q^{2} region.
- Measurement of new R ratios with different hadron species ($\left.R_{k \pi}, R_{k \pi \pi}, R_{\phi}, R_{D}, R_{J / \psi}\right)$
- Angular analysis of $\mathrm{B}^{0}->\mathrm{K}^{*} 0 \mathrm{e}^{+} \mathrm{e}^{-}$decays.
- Lepton universality tests with baryons (Λ_{b} baryons).
- Searches for $b \rightarrow s \tau^{+} \tau^{-}$
- + many more ..
- Exciting times to be on LHCb!

