
Software and
Computing
Challenges

Tommaso Boccali – INFN Pisa

Outline
▸ Why this talk?

▹ Why are computing and software important / an issue for

High Energy Physics?

▸ The current picture – how it is working

▸ Expected evolution of needs in the next decade(s)

▹ Is that a problem? Can we cope?

▸ The current (most notable) trends in Computing for HEP

2

Why is computing a relevant
aspect in HEP
▸ In High Energy Physics, the era of low hanging fruit is

long gone

▹ In the first 30 years of 20th century, a tabletop

experiment and maybe a photocamera was

enough for groundbreaking studies

▸ Now we are in the regime where in order to be

relevant one needs to look into high energy events

and/or rare processes and/or very precise

measurements

▸ In all these 3 cases, the need for a lot of computing is

an unfortunate consequence
4

Thomson, e-, 1897

Anderson, e+, 1932

How to?
▸ High Energy: Look up in the sky!

▹ Astroparticle Physics, the universe

produces for you cosmic rays (measured

up) to some 1021 eV (109 TeV)

▹ But they are rare!

▸ Rare: Produce (a lot of) high energy events

using colliders

▹ Current best is “only” at 13 TeV (c.m.),

but we can produce billions per second

5

eV

… but why?
▸ Most of the reasoning involves the

relation between the cross section of a

given process and the number of events

generated

▹ N = s x Lint

▸ More (c.m.) energy in the collision of

beams: the total cross section

increases + the complexity of the

collision results increases

▸ You get more events, and more crowded

6https://arxiv.org/pdf/1005.3299.pdf

… but why (2)?
▸ This part of the cross section plot is “mostly

understood and not interesting” (we do not

expect to extract easily new knowledge from it)

▸ This part is “interesting”, but has cross sections

up to billion times smaller

▸ Unfortunately quantum mechanics tells us the

“choice of the process” is completely

probabilistic: you cannot force nature to produce

only what you care for

▸ In order to produce the latter, you need to

produce (a lot of) the former
7

Some numbers (CMS and
ATLAS used as a reference)
▸ ATLAS and CMS: general purpose, but

certainly designed with the Higgs discovery

(or non-discovery) in mind

▸ So you want to study a process here but to

do so you cannot avoid to generate (a billion

times more) uninteresting processes

▸ But how many “trials” you need?

▹ assume you know the Higgs prod cross

section is somewhere 1-100 pb, and the

total cross section ~ 100 mb
8

Total number of “trials” needed

▸ If your goal is to have 10.000.000 produced Higgs in 5 years (per

experiment):

▸ Lint = 100 fb-1 (1e7/(100000 fb)) and then, scaling to the instantaneous lumi

(assuming an efficiency factor ~5 for shutdown periods, vacations, repairs,

etc), when you remember that 1 b = 10-24 cm2
 Lint = 100 fb-1=1041 cm-2

▹ LINST = 5(ineff) * 1042 cm-2 / (5 y *3*107s/y) = O(1034) cm-2 s-1

▸ .. But at the same time, 100 fb-1 will generate some 1016

«uninsteresting» collisions

9

The LHC!

… well but … I can select
only the interesting ones!
▸ Not an easy task, they do not always look so

different

▸ On top of this, the 25 ns bunched structure of LHC

(linked to the capability of beam injection, ond to

the capability of our detectors to discriminate

events only if they are “distant in time”)

superimposes events (~30-50 Run-2, up to 80

Run-3, up to 200 in the future), and most of the

signals come from the uninteresting one (and, they

are not colored!)

▹ An online selection is not trivial; in order to

have decent efficiency on the “interesting

events” you cannot be too picky

▹ For some areas of physics (the B sector, for

example), even the interesting events are _a

lot_
10

Let’s do a back of the envelope
estimate of the storage needs

▸ We can use a simplified “IT” model for “a

detector”

▹ It “takes a picture” of a collision event every

25 ns (@ 40 MHz)

▹ It has ~ O(100) Million acquisition channels

(10x for the detectors to come)

▹ Assuming 1 channel = 1 byte, the virgin

data rate would be 

▸ 40e6 ev/s * 100e6 byte/ev = 4 PB/s

▸ A“storage problem” is automatic given the

needs for looking into rare events with an high
11

The storage
▸ 4 PB/s in 5 years would be 120 ZB (ZettaBytes! ; 1 ZB = 1 Million PB = 1021

bytes) 

▸ Of coarse we cannot save 4 PB/s for any reasonable number of

seconds, and the experiments need to last for years; hence a number

of solutions / tricks / approximations needs to be found

▸ I am not detailing them here, but some of them:

▹ Easy ones: Zero suppression: do not save the reading of

channels which are not “significant” (lossy compression): 100

MB/ev  1 MB/ev

▹ Complex ones: try and interpret the events as they flow, and

select “enough of the interesting ones”  the trigger (not covered

here, sorry)!
12

Storage (and CPU) drive the trigger
rate
▸ In an ideal world, all the 40 MHz 25 ns snapshots (events!) would be saved

and analyzed

▸ In practice, a much lower rate can be saved for $$ reasons; years of studies

have defined the “minimum” possible while still preserving the physics

capabilities at least for the most important physics channels.

▸ In the end, it is a tension between what you can afford and what you would like

to collect; LHC history (CMS-ATLAS) is

▹ Run-1 (2010-2012) : 100-500 Hz (out of the 40 MHz)

▹ Run-2 (2015-2018) : ~ 1 kHz

▹ Run-3 (2022-2024) : 1-2 kHz

▹ Run-4 (2027+, see later) : > 5 kHz

13

“what is the limiting factor @
a HEP experiment?”
▸ Apart from some limits on the electronics (“I cannot dispatch

more than X consecutive triggers”), the real limit on the

numbers and type of events collected by HEP experiments is

the Computing, and on its turn the amount of money one can

dedicate to that.

▸ If you want, it is a reversed process: I know what I can spend

on the computing  I know how many events I can collect  I

know what type of physics I can do.

▸ This is why any R&D, new idea, new solution which allows

to reduce the Computing costs, is very visible and

increases the physics potential of the experiment 14

Ok for the storage, but CPUs?

▸ Up to here, we discussed the storage needs; it turns out that

CPU power is also a problem

▸ Where do we spend CPU time in current HEP experiments?

▸ Broad brush list – se later for details

▹ Interpretation of RAW detector signals into physics objects

(“Reconstruction”)

▹ Statistical studies of the reconstructed events (“Analysis”)

▹ Simulation of the physics processes (“Generators”), the

detector response (“Simulation”), the electronics

(“Digitization)”

16

Why simulation?
▸ The largest part of our activities is

comparing hypotheses with the data

we collect

▸ For simple systems, we can

analytically compute the expected

result (given a hypothesis) with the

data

▸ For more complex systems, in which

many stages and processes are

taking part to the outcome, this is

simply not possible…

17

F=ma ??

Reality
LHC collisions

Decay of unstable

particles

Detector electronics

Trigger

Analysis

Reconstruction

18

Theoretical model
Simulation of decays of

unstable particles

Simulation of interactions

particle-detector

Simulation of detector

electronics

Trigger

Reconstruction

Analysis

Simulation

19

Where do we spend CPU?

▸ Different experiments have different

shares in the CPU utilization, but in

general simulation (from partons to

electronic signals) and reconstruction

(from electronic signals to “physics

objects” like jets, leptons, ….) are the

most time consuming

▸ As a rule of thumb, # of simulated events

> # of collected events

20

towards absolute numbers
▸ Event Generation: depends strongly on

the generator choses (Madgraph vs

Sherpa vs PowHeg vs …) and the

precision requested (LO vs LNO vs NLO

vs …)

▸ Simulation: by now, the vast majority

(all?) the experiments use Geant4 as

the simulation toolkit; still, its requested

resources depend on stuff like: volume

of the detector, number of volumes,

intrinsic detector resolution, importance

of low energy secondary interactions,

capability to use parametrization
21

…
▸ Analysis the task which tries to interpret the signals

from the (simulated) detector is terms of quantities

interesting to the particle physicist (leptons, jets,

vertices, …)

▸ The most time consuming task is “tracking

reconstruction” using very high res detectors

(typically thin silicon layers). It is a good example

since

▹ It is mathematically complex (Kalman Filter,

matrix algebra, propagation in a not uniform

magnetic field)

▹ It is highly combinatorial: given a set of N

signals, it scales as NM, with M>1 and

depending on your algorithm

▸ This is typical today  see later for how Machine

Learning is changing the picture
22

23

…
▸ Analysis is mostly selection of events, with a

statistical interpretation

▹ Selection can mean running ad-hoc

reconstruction steps, hence not CPU cheap

▹ Statistical interpretation is today a quite

CPU intensive activity:

▹ high dimension likelihoods on million /

billions of events

▹ utilization of Toy Monte Carlos to

correctly estimate correlated errors

24

But before giving absolute numbers ..
unit of measurement for CPU!

▸ The “number of CPU seconds” a task needs is not a proper unit of measurement for

CPU, even more if we want to compare results from CPU generations distant in time

▸ Even industry standard benchmarks (SpectInt, SpecFP, …) are not suitable, since

they probe CPU aspects not necessarily interesting to us

▸ HEP (via HepiX) created a synthetic benchmark based on a subset of SPEC®

CPU2006, which is being used since 2009: HepSpec06 (HS06)

▹ Rule of thumb: a CPU “core” today is ~10-20 HS06

▹ Hence, a 64 core CPU is ~ 1000 HS06

▹ Hence, a 2 CPU box is today ~ 2000 HS06. Since it costs ~7000 CHF, the

current price estimate is ~ 3.5 CHF/HS06

25

Absolute numbers …
▸ Today, with standard Run-2 LHC, typical numbers in

CMS/ATLAS are

▹ Event generation: 100-1000 HS06s per event (which

means ~ 10-100 sev/ev on a single Xeon core)

▹ Simulation (G4): 500-3000 HS06s

▹ Reconstruction: 150-300 HS06s

▹ Analysis: can be anything, usually quite fast (<1-100 HS-

06s)

▸ With these numbers, we can try and project the Computing

(CPU and storage) needs for a HEP experiment today,

assuming that LHC collides beams ~ 7Ms/y and experiments

27

29

So a single data taking year ….
▸ Storage

▹ Data:

▹ 7 PB RAW (x2 for a backup

copy)

▹ 3.5 PB reconstructed data

▹ MonteCarlo

▹ 14 PB RAW

▹ 7 PB reconstructed simulation

▸ TOTAL ~30 PB/year

▸ CPU

▹ Data:

▹ 7e9 ev*300 sec*HS06/ev =

2e12 sec*HS06 = 70000 HS06

for the entire year ( 7000

MC

2x110002x70000 HS06 reconstruction

0 HS06 simulation

Analisys (MC + DT):

7e9ev*2*10 sec*HS06/sec *N = 1.4e11

sec*HS06 *N = 4500*N HS06

Where N is the number of independent

analyses,can be very high (~100)

TOTAL: 70000+140000+220000+450000 ~ 1M

HS06

Today they are

3000 HDD/y

100000 computing cores

.. And these are per experiment for a single year

of data taking!

Reality is higher …
▸ The estimate in the last page does not account for the fact that multiple

years are used at the same time, mistakes are done, special data taking

periods also take resources. And, on top of that, there are always (at

least) 3 activities going one

▹ Analyzing data from previous + current year

▹ Taking data in the current year

▹ Preparing future data taking periods and

detector upgrades

▸ So, all in all, real resource number per

experiment are underestimated by at least a

factor 3x

30

How to handle this?
▸ By today’s metric, handling ~ 1 Million CPU cores and 2-3

Exabytes of data does not seem an impossible task

▸ But, LHC was approved in the mid 90s, when 1 single HDD was

10 GB (today ~ 1000x), and a CPU was probably 0.1 HS06 (today ~

10000x)

▸ You can understand what leap of faith in technology is

needed to think that in 10 years (the expected start of LHC was

< 2005) you will be able to handle resources which, in 1995,

were of the same size of the entire world IT resource

31

32

Comparison with the rest of the world - 2012
Business emails sent

3000PB/year

(Doesn’t count; not managed as

a coherent data set)

Google search

100PB

Facebook uploads

180PB/year

Kaiser

Permanente

30PB

LHC data

15PB/yr

YouTube

15PB/yr
US

Census

Lib of

Congress

Climate

DB

Nasdaq

Wired 4/2013

Current ATLAS data

set, all data

products: 140 PB

Big Data in

2012 We are big…

not NSA-big, but big

(and more cost

efficient)

~14x growth

expected 2012-

2020

32

http://www.wired.com/magazine/2013/04/bigdata/

How to design a computing
model for HEP in ~ 1995?

1. Build a BIG data center

1. A large building with ~1000000 computing cores, and 200000 HDD;

Probably it would work; Google apparently has facilities much larger than

that; NSA for sure…

2. But: It would be a single point of failure; problem finding enough personnel

in a single area, member states not willing to fund resources abroad, ...

2. Many small data centers

1. De-localized cost / expertise / redundancy; member states happy since

they can build a local infrastructure, …

33

Introducing the GRID

▸ Idea was not new in Computer

Science; HEP had “simply” to make it

real at a large scale

34

“When the network is as fast as the computer's

internal links, the machine disintegrates across

the net into a set of special purpose appliances”

(George Gilder)

The idea in a nutshell
Split the problem into two levels:

▸ The physical level:

▹ Distribute resources worldwide in N (>100) centers

▹ Technically is a nightmare: distributed Authentication,

Authorization, network paths, multiple access protocols to

CPUs/Storage, …

▸ The logical level:

▹ Try and provide the users (the physicists!) with a logical single

view, where ”many CPUs” and “a lot of storage” is available in a

“flat view”

35

36

Build a wall

(call it API

layer,

intelligent

system, …)

The implementation
Leaving aside the historical development, we have now

▸ A global entity for LHC computing (and more, see later), the

Worldwide LHC Computing GRID (WLCG) – sometimes

called the “5th big LHC Collaboration”

▸ A set of low level tools allowing the collaboration to work:

▹ A trust model for mutual Authentication and

Authorization

▹ A set of recognized protocols for data access, data

movement, metadata organization, support,

accounting

▸ O(200) centers in the collaboration

▹ With “guaranteed” service levels and some

obligations…
37

The network
▸ The ideal “as if local” is possible when all the nodes see all the data at “as

local” speed; which in LHC metrics mean ~ each core should be able to

access every piece of data at O(5 MB/s)

▸ In 1995 this was a dream: network lines are expensive and rare (no Netflix

yet!); we cannot assume to prepare the full mesh of networking for O(100)

centers – which would mean n(n-1)/2 connections  O (104)

▸ MONARC project studied and proposed a hierarchy of computing centers:

the “Tiered data model”; fewer paths are needed, and their importance is

different

39

ti
e

rs

40

40

A second copy of RAW data (Backup)

Re-reconstructions with better calibrations

Analysis Activity

They are dimensioned to help ~ 50
physicists in their analysis activities

Tier 1Tier 1Tier 1 Tier 1
Tier 1

Tier 2Tier 2Tier 2 Tier 2
Tier 2

CERN

Master copy of RAW data

Fast calibrations

Prompt Reconstruction

Tier 0

Tier 2Tier 2Tier 2 Tier 2
Tier 3,4

Anything smaller, from University clusters
to your laptop

41

1st need: put the data in

safety

1st copy stays @ CERN, but

a 2nd copy must go

distributed for disaster

recovery

 Guaranteed lines Tier-0

 Tier-1s

 By today , multiple of

100 Gbps

42

… and from

Tier-1s to the

other data

centers …

The software!
▸ How big / how complex?

▸ The HEP collaborations have quite unique needs for software:

▹ It is inevitably large  see later

▹ It must be runnable on every country participating the effort,

and more  no copyrights, no embargoed code

▹ It must cover a large range of use cases  simulation,

reconstruction, selection, analysis, …

▹ It is a long journey: experiments last O(10-30y), difficult to

rewrite from scratch when taking data

44

Let’s use ATLAS and CMS as examples

▸ Code published with Apache 2.0 license (“free”)

▹ https://gitlab.cern.ch/atlas

▹ https://github.com/cms-sw/cmssw

45

https://gitlab.cern.ch/atlas
https://github.com/cms-sw/cmssw

How big?
▸ SLOC are a standard industry metric, and there are tools to translate

them into «man years» and in the end to $$ (assuming a US typical

programmer)

▸ The result is enormous, but reflects the fact that both software stacks

are 15 years old or more

▸ It does NOT include externals, like Geant4, geometry engines, particle

generators, ROOT, etc

▸ As a reference:

▹ Linux Kernel is: 15M sloc, 4800 FTEy, 650M$ (3x CMS)

▹ Geant4 is: 1.2M sloc, 330 FTEy, 45 M$ (1/4x CMS)
46

https://dwheeler.com/sloccount/

.. But this is only the ”core code”

▸ We rely on many externals (Geant4 is an external, ROOT is an

external, Pythia is an external) which inflate greatly the total size

▸ This (in unreadable fonts) is the list of externals for a typical CMS

release
alpgen qd root_cxxdefaults sockets catch2 gcc-ccompiler gcc-cxxcompiler gcc-f77compiler mpfr cmsswdata codechecker csctrackfinderemulati cuda-stubs cuda-gcc-support cvs2git dablooms db6 dmtcp doxygen eigen fastjet-contrib fastjet-contrib-archi gcc-analyzer-ccompile gcc-analyzer-

cxxcompi gcc-atomic gcc-checker-plugin gcc-plugin gdb geant4-parfullcms geant4data py2-numpy openloops git glibc glimpse gmake gnuplot gosam gosamcontrib hdf5 igprof intel-license ittnotify lapack lcov libffi libxslt llvm md5 openblas ofast-flag openmpi professor py2-sympy py2-absl-py py2-

appdirs py2-argparse py2-asn1crypto py2-atomicwrites py2-attrs py2-autopep8 py2-avro py2-awkward py2-backcall py2-backports py2-backports-functooccj py2-backports_abc py2-beautifulsoup4 py2-bleach py2-bokeh py2-bottleneck py2-cachetools py2-certifi py2-cffi py2-chardet py2-click py2-

climate py2-colorama py2-contextlib2 py2-cryptography py2-cx-oracle py2-cycler py2-cython py2-dablooms py2-decorator py2-defusedxml py2-docopt py2-downhill py2-dxr py2-entrypoints py2-enum34 py2-flake8 py2-flawfinder py2-fs py2-funcsigs py2-functools32 py2-future py2-futures py2-gast py2-

gitdb2 py2-gitpython py2-google-common py2-googlepackages py2-grpcio py2-h5py py2-h5py-cache py2-hep_ml py2-histbook py2-histogrammar py2-html5lib py2-hyperas py2-hyperopt py2-idna py2-ipaddress py2-ipykernel py2-ipython py2-ipython_genutils py2-ipywidgets py2-jedi py2-jinja2 py2-

jsonpickle py2-jsonschema py2-jupyter py2-jupyter_client py2-jupyter_console py2-jupyter_core py2-keras py2-keras-application py2-keras-preprocessi py2-kiwisolver py2-lint py2-lizard py2-llvmlite py2-lxml py2-lz4 py2-markdown py2-markupsafe py2-matplotlib py2-mccabe py2-mistune py2-mock

py2-more-itertools py2-mpld3 py2-mpmath py2-nbconvert py2-nbdime py2-nbformat py2-networkx py2-neurolab py2-nose py2-nose-parameterize py2-notebook py2-numba py2-numexpr py2-oamap py2-onnx py2-ordereddict py2-packaging py2-pandas py2-pandocfilters py2-parsimonious py2-parso

py2-pathlib2 py2-pbr py2-pexpect py2-pickleshare py2-pillow py2-pip py2-pkgconfig py2-plac py2-pluggy py2-ply py2-prettytable py2-prometheus_client py2-prompt_toolkit py2-protobuf py2-prwlock py2-psutil py2-ptyprocess py2-py py2-pyasn1 py2-pyasn1-modules py2-pybind11 py2-pybrain py2-

pycodestyle py2-pycparser py2-pycurl py2-pydot py2-pyflakes py2-pygithub py2-pygments py2-pymongo py2-pyopenssl py2-pyparsing py2-pysqlite py2-pytest py2-python-cjson py2-python-dateutil py2-python-ldap py2-pytz py2-pyyaml py2-pyzmq py2-qtconsole py2-rep py2-repoze-lru py2-requests

py2-root_numpy py2-root_pandas py2-rootpy py2-scandir py2-schema py2-scikit-learn py2-scipy py2-seaborn py2-send2trash py2-setuptools py2-simplegeneric py2-singledispatch py2-six py2-smmap2 py2-soupsieve py2-sqlalchemy py2-stevedore py2-subprocess32 py2-tables py2-tensorflow py2-

terminado py2-testpath py2-theanets py2-theano py2-thriftpy py2-tornado py2-tqdm py2-traitlets py2-typing py2-typing_extensions py2-uncertainties py2-uproot py2-uproot-methods py2-urllib3 py2-virtualenv py2-virtualenv-clone py2-wcwidth py2-webencodings py2-werkzeug py2-wheel py2-

widgetsnbextensio py2-xgboost py2-xrootdpyfs pydata pyminuit2 pyqt python-paths python_tools rootglew scons sloccount tcmalloc tcmalloc_minimal tensopy2-virtualenvwrapperrflow tinyxml2 xtl blackhat boost boost_header python bz2lib cascade_headers ccache-ccompiler ccache-cxxcompiler

ccache-f77compiler zlib gmp photos_headers pythia6_headers openssl clhep clhepheader cppunit cuda curl libxml2 dcap root_interface xz xerces-c vecgeom_interface hepmc_headers distcc-ccompiler distcc-cxxcompiler distcc-f77compiler dpm expat fastjet fftjet fftw3 freetype gbl gdbm gsl giflib

google-benchmark libjpeg-turbo hector heppdt madgraph5amcatnlo llvm-cxxcompiler jemalloc jimmy_headers ktjet libhepml libuuid llvm-ccompiler llvm-f77compiler meschach mxnet-predict numpy-c-api x11 oracle pacparser yoda protobuf python3 qd_f_main sqlite sigcpp tauola_headers tbb

tensorflow-framework tensorflow-runtime tensorflow-xla_compil0-pafccj3 toprex_headers utm valgrind vdt_headers xrootd xtensor boost_system boost_iostreams boost_serialization boost_program_options boost_python boost_regex boost_signals boost_test cascade yaml-cpp photos pythia6 pcre

cub cuda-api-wrappers cuda-cublas cuda-cufft cuda-curand cuda-cusolver cuda-cusparse cuda-npp cuda-nvgraph cuda-nvjpeg cuda-nvml cuda-nvrtc das_client vecgeom hepmc frontier_client google-benchmark-main libpng iwyu-cxxcompiler libtiff libungif llvm-analyzer-ccompil llvm-analyzer-

cxxcomp mcdb opengl openldap oracleocci pyclang qtbase sip starlight tauola tensorflow-c tensorflow-cc tkonlinesw toprex vdt boost_chrono boost_filesystem boost_mpi cgal lhapdf classlib davix rootcling geant4core photospp geant4static graphviz lwtnn millepede qt3support rivet tkonlineswdb

cgalimageio herwig rootmathcore rootrio pythia8 geant4vis thepeg pyquen qt rootrint rootrflx rootsmatrix rootx11 sherpa charybdis rootthread dire tauolapp geant4 geneva herwigpp jimmy qtdesigner rootgeom rootxmlio vincia rootcore evtgen roothistmatrix rootmath rootxml rootphysics rootgpad

rootfoam rootspectrum root rootminuit rootgraphics rootgui rootinteractive roothtml rootminuit2 dd4hep-core roofitcore mctester professor2 rooteg rootgeompainter rootrgl rootged rootguihtml rootmlp rootpy dd4hep dd4hep-geant4 roofit rooteve roottmva roostats rootpymva histfactory coral

▸ Note that gcc is there! CMS ships its own compiler, so dependency on the host Linux is

only at the level of glibc

47

The HEP framework(s)
▸ Such a complexity of use cases and code, with multiple alternatives in each of

them, needs a coherent Framework, which is at the core of the HEP software,

and is the piece which basically stays stable-with-adiabatic-changes within the

experiment lifetime. Changing a FW is not easy, and not often done during

data taking (CDF and Babar can be exceptions). The CMS case:

▹ Y< 2000: CMSIM+CMKIN (Fortran + Geant3)

▹ 2000<Y<2005: OSCAR + ORCA (C++ + Geant4 +

ObjectivityDB/ROOT)

▹ Y>2005: CMSSW (C++ + Geant4 + ROOT + Python)

▹ The last «change» (ORCA to CMSSW) took from 2004 to 2007 to

reach the same level, with 2 devel teams needed (the old SW used

for a TDR while preparing the new one)

▹ Data taking started in 2008
48

Typical needs from a framework …

▸ Modularity: large utilization of plugins to late-bind algorithms, pieces of

code, external libraries

▸ Scheduling: must be efficiently able to schedule the execution of code

(taking into account dependencies) on the available resources

▸ Portability: not attached to a single compiler / OS / architecture

▸ Evolution: the computing scenario is not static. From 2008 to now for

many things happened; still most of the FW interface has been stable:

49

From single process to multi process (COW) to multi threaded (TBB)

From single core PCs to O(300) cores per PC (KNL)

From configs to Python as the uber language

From fully scheduled execution to unscheduled (needed for multi threading)

Analysis support from PAW-ROOT(cint)-ROOT(cling)-PyROOT-UpROOT-AVRO

From GRID to Clouds to Virtualization to HPC to heterogeneous

computing (GPU, FPGA, QC even…)

From data locality to streaming storage federations

From SL4/gcc4 to CC7/gcc8

From 32 to 64 bit

SW maintenance is of key importance

▸ Maintaining a 10M SLOC code, which needs to run on multiple

architectures and is developed by some 1000 collaborators is not

trivial, and is today a fully automated task

▸ GitHub / Jenkins / GitLab / BitRise are systems which have been

used, and help to maintain a fully validate codebase on multiple

platforms, even in presence of > 100 code changes per day

50

The future ….
▸ “it all works”, so why change?

▸ We have the proof that the computing systems for today’s

collider experiment do work. CMS and ATLAS have published >

1000 papers each, ALICE and LHCb ~ 500

▸ Computing is a large operational cost; but is ~ constant year

over year and somehow possible to cover ….

▸ Are we done? No we are not …

51

The medium term future for HEP

▸ HL-LHC:

52

53We are here

• 2015-2018: 13 TeV, ~2.5x in luminosity, up to 3x in

hadronic events per collision

• 2021-2023: 13 TeV, again 2.5x in luminosity

• 2026+: the so-called HL-LHC (or SLHC)

• 2035+: the so-called HE-LHC @ 30 TeV

• Magnet for this simply do not exist at them

moment, so wait and see
• (2040+: at some point I will retire, so no more my problem…)

run

shutdown

Run 1 Run 2 Run 3 Unknown territory…

HL-LHC

54

~
p
ro

p
o

rt
io

n
a
l

to
 t
h

e
 p

ile
-u

p
 a

n
d

 h
e

n
c
e

to
 s

in
g

le
 e

v
e

n
t
c
o

m
p

le
x
it
y

~
p
ro

p
o

rt
io

n
a
l

to
 t
h

e
 t
o

ta
l
n

u
m

b
e

r

o
f
g
e
n
e
ra

te
d

c
o

lli
s
io

n
s

We are here!

And for computing?

55

HL-LHC is not the end of the story!

56

2040?

2035?

2040?
2040?

57

2040?

2045?

How are computing resources linked to
machine / experiments parameters?

● # events collected = Experiment live time * Experiment

rate to offline

○ LHC RunII: 7Msec * 1000 Hz = ~ 10 B events

● Bandwidth, total storage = # events collected * (1+ fMC)

* FSTORAGE(<PU>)
○ FSTORAGE(<PU>) ~ linear in <PU>

● Computing power = # events collected * (1 + fMC) *

FCPU(<PU>)
○ FCPU(<PU>) superlinear in <PU>

● Storage is also ~ integral with time

● StorageYearN+1 = StorageYearN + DeltaNEW EVENTS

58

In the end, main

parameters are

● Trigger rate

● Live time of the

Accelerator

● <PU>

● fMC (MC

production needs)

PU: the # of pp
interactions per single
bunch cossing

Scaling LHC → HL-LHC

59

● Main Evolution of important computing parameters

○ Live time cannot change much

○ <PU> goes from 35 to 200

○ Trigger rate 1 kHz → 7.5 kHz
● HL-LHC / LHC = (7.5/1) * (200/35) = 42

● This is optimistic!

○ Triggers have to remain clean

○ Assumes all is linear with <PU>, while

reconstruction has at least a superlinear

component

○ Upgraded detectors, more DAQ channels

● A more realistic educated guess is 50-

100x keeping all the rest constant

Trigger rate scales
at best with ℒ for
● Same

physics
● Clean

triggers

Difficult to do
better than this

In the meantime, technology …
▸ Price per unit resource, from CERN

procurement (B.Panzer)

▸ Moore’s (Kryder’s, Butter’s, Nielsen’s, …) law

once predicted 2x/18 months (which is +60%/y)

▸ Now reasonable estimates are +15-20%/y

▸ In the 7-8 years to HL-LHC, +20%/y is just 4x

at fixed budget

▸ (50-100x)/4x = (12-25)x to “gain somewhere

else”

60

Question is …
▸ Assuming we cannot get more money per year for computing, where do we get the 12x-

25x missing?

▸ A non final list

1. Infrastructure changes (where / how to get CPU and Disk, at which price)

2. Technological changes (use different technologies)

3. Physics #1: change analysis model (do the same physics with less resources)

4. Physics #2: reduce the physics reach (for example increasing trigger thresholds)

▹ Not even considered here … it is the “desperation move” if we fail with everything else

5. Use “modern weapons” (new/faster algorithms/tools)

6. Something unexpected...

62

63

Infrastructure changes

● Today’s HEP computing
○ Owned centers, long lifetime (10+ y)

○ Well balanced in storage vs CPU

○ FAs pay for resources + infrastructure + personnel

Is it the most economic computing you can buy today?

● YES, if you care about your data safety (and your

capability to access it)

● NO, if you can use stateless resources (CPUs!)
○ They come and go fast

○ You can hire them (from a commercial provider, ...)

○ You can use “someone else” resources “CPU for free can be

found, Disk for free

cannot!”

64

The data lake model
● Keep the real value from the experiments

safe

○ (RAW) data and a solid baseline of

CPU in owned and stable sites

○ Allow for multiple CPU resources to

join, even temporarily

■ Eventually choosing the

cheapest at any moment

○ Solid networking: use caches /

streaming to access data

● Reduce requirements for Computing

resources

○ Commercial Clouds

○ Other sciences’ resources

■ SKA, CTA, Dune, Genomics, ...

○ HPC systems

ProtoDune 2-3
GB/s (like CMS);
Real Dune 80x

SKA up to 2
PB/day

A single
genome ~
100 GB. a 1M
survey = 100
PB

CTA projects
to 10 PB/y

Lake

Node 1

Lake

Node 2

Lake

Node 3

> 1 Tb/s

CPU

center

CPU

center

CPU

center

CPU

center

HPC

center

HPC

center

Lake

Node 4

65

Supercomputing (HPC)

● The world is literally full of Supercomputers. Why ?

○ Real scientific use cases

■ Lattice QCD, Meteo, ...

○ Industrial showcase (“Country XY is

technologically capable”)

■ And hence not 100% utilized,

opportunities for smart users. Can we

be one of them?

● Many not trivial problems to solve:

○ Data access (access, bandwidth, ...)

○ Accelerator Technology (KNL, GPU, FPGA,

TPU, ???, …)

○ Submission of tasks (MPI vs Batch

systems vs proprietary systems)

○ Node configuration (low RAM/Disk, …)

○ Not-too-open environment (OS, …)

● Some hint of global slowing down, but not for top

systems where the “war” is on
● 1 Petaflops = 1015 floating point operations per second

● 1 Exaflops = 1018 floating point operations per second

1 Exaflops

1 Petaflops

2020

66

Supercomputing - the expected future
● The race will go on, at least between major players

● EU wants to enter the game - never a the top in the last 25y

● Next big thing is ExaScale (1018 Flops - operations per second)

○ Should be well available by HL-LHC

● Somehow difficult to compare, technologies / benchmarks, but

○ LHC needs today the equivalent of ~30 PFlops

○ A single Exascale system is ok to process 30 “today” LHC

○ Scaling: a single Exascale system could process the

whole HL-LHC with no R&D or model change

● Some FAs/countries are explicitly requesting HEP to use the

HPC infrastructure as ~ only funding; it is generally ok IF we

are allowed to be part in the planning (to make sure they

are usable for us)

AMERICAs

ASIA

EU
US: apparently
no way to have a
say
EU: ETP4HPC
has at least
“asked for HEP
position”
China/Japan: ???

67

Announced

March 2019

Announced

May 2019

Intel CPU (😀) and

Intel Xe GPU (😭)

AMD CPU (😀) and

AMD GPU (😀)

68

The rest of the world?

Japan @Exascale

by 2022 with Fugaku

(ARM (😭)

w/o GPU (😀))

69

Technology changes
● Use the cheapest technology per $. It used to be Linux

PCs, now it is

○ Mobile (low power) processors

○ Vector processors (“GPGPUs”)

○ Code-in-hardware (“FPGA”, “ASIC”, …)

● Can we use them?

○ Not easily - limited to mission critical algorithms

○ We need a way not to write the code once per

platform

○ We need frameworks to embrace Heterogeneous

Computing

○ Efforts just started; SYCL, Alpaka, Kokkos,

DPC++

High
performanceLow power (running

cost /4)

Physics #1: change analysis
model1. Even today, most HEP physics analysis use a

sequential model:

▹ Analyze event by event on a single CPU

▹ Make it faster by making it embarassly parallel

using a lot of CPUs (for example, using the

GRID)

▹ Big data tools are known to be better at this:

▹ Map&Reduce: better parallelization, better

data distribution

▹ Columnar analyses: do not work per

event, but per category

▹ In both cases, you get away from the

event loop

70

events = load_events()
for ievent in events:

do_something(ievent)
do_something_else(ievent)
accumulate_results(ievent)

Do_final_stuff()
Show_results()

What is the expected difference?

71

▸ This is not finding new resources, it is just trying to use

better what we have

▹ Matches better the underlying hardware, which

can be very different – without users needing to

know

▹ Can change the perceived behaviour of the

system

▸ Grid/Cloud: it is a container ship

▹ Process many items at the same time, but the

shipping time for a given item cannot be made

faster

▸ Reduction facilities: easier to steer more resources to

a single use case

▹ High priority tasks can overtake a large fraction of

the system

«These 3000 analysis tasks will

be done in 5 days»

«In the next 5 days you will get an

analysis done every 2 min»

Analysis Description
Languages▸ One “recent” solution which helps abstract

from the event loop is the use of Analysis

Description Languages (ADLs)

▸ Describe in “some high level way” the

analysis, do not write code for that

▸ Abstract from the actual technology: from

the same ADL pseudocode to

GRID/GPU/Spark/… optimized code

▸ Also important for Analysis Long Term

Preservation: just needs more backends

to be maintained

72

https://indico.cern.ch/event/769263/

Physics #1: change analysis
model2. Re-derivation of physics quantities at analysis time (so in

principle repeated N times) is a large source of CPU utilization

▹ It is needed because sometimes latest-greatest

calibrations are late in the process

▹ It is needed if every analysis thinks there is the need to

specifically fine tune jet / tracking / id algorithms

▹ It costs a lot: CPU to re-run algorithms, Storage to host

data samples complete enough to rerun

▸ As experiment (and their understanding of algos) improve,

analysis can be more standardized

▹ A single algorithm fits all

▹ Calibrations are stable and do not need late second

corrections

▹  no need to keep more than 1 algo per object, and to

serve large files with low level quantities

73

“Prevalent analysis format in CMS

reduced by a factor 3000x in event size

since the start of Run-1”

Use “modern weapons”
▸ These can be from the technology point of view (the Big Data Tools

we already saw) ..

▸ … or novel ways to write algorithms. Here obviously AI in general

and Machine Learning / Deep Learning techniques stand up

▸ The space / time here is way too short to go into any detail, but by

now ML techniques are used everywhere in HEP processing

▹ Trigger level (even on FPGA)

▹ Simulation (GAN tools are very promising)

▹ Reconstruction (… everywhere, from S/N separation to

clustering in calorimeters and trackers)

▹ Analysis (selection, interpretation, …)
74

ML usage patterns #1
▸ At trigger level, modern tools (hls4ml, BM, LeFlow,

…) allow to write on FPGA the result from the

training on “largish” machine learning networks,

taking into account pruning to match the limited

resources

▸ At Simulation level, GANs have shown the potential

to mimic more complex iterative algorithms (like

those in Geant4) with a huge gain in timing

75

Longitudinal shower shape in a

calorimeter from 100 GeV e-

from here. Timing is 1 minute

vs 0.04 msec

https://fastmachinelearning.org/hls4ml/#:~:text=hls4ml%20is%20a%20Python%20package,configured%20for%20your%20use%2Dcase!
https://cds.cern.ch/record/2708682/files/PoS(ISGC2019)020.pdf
https://github.com/danielholanda/LeFlow

ML Usage patterns #2

At reconstruction level, ML is used generally

in two categories of situations:

▸ Improvement in classification (S vs B,

and in general category A vs B, C, …) using

a large number of (even poorly)

discriminating variables

▸ Clustering algorithms which exhibit

combinatorial explosion with classical

algorithms (jet clustering, tracking)

▹ CNNs (input-as-images), Graph

Networks
76

Typical classical algorithm:

60% efficiency for 50x rejection

DeepCSV and other AI based

algorithms: 60% efficiency

for 300x rejection

b-tag

here

https://indico.cern.ch/event/948465/contributions/4323718/attachments/2248872/3814727/vCHEP_2021_Edge-Classifying_INs.pdf

Something unexpected...
▸ Well, being unexpected it is difficult to predict, but there are a

few options on the table which could be relevant

▹ In memory computing

▹ FPGAs and CPUs on the same die

▹ Quantum Computing

▹ …

▸ A few words just on the last one (if it not too late; then you

can look at them offline)
77

Quantum computing for
HEP?
▸ QC is promising since in

perspective has the potential to

overrun classical technologies: we

have seen that standard CPUs are

improving exponentially (Moore’s

law)

▸ BUT: QC performance are linked to

2N, where N is the number of qbits,

which is increasing fast  it will

beat the CPU exponential sooner

than later

78

QC in HEP: what for?
▸ Just a personal list of where it could be useful (next page

has links to recent papers)

▸ Simulation: while generating events from pp collisions,

we cannot use an exact method, and we are forced to

approximations, expansions, … (again LO vs NLO vs

NNLO, …). Ideally, a QC system which is made at least

locally identical (same H) to a subset of SM could be

swapped with

▸ Reconstruction algorithms: use superposition

to probe large phase spaces, in particular in

algorithms with high combinatorics (e.g. Grover)

▸ Mimimization: a generic high dimensional

minimization engine, usable in reconstruction,

analysis, … would be the Holy Grail for us, and

could be a drop-in replacement to tools we already know
79

QED?

Parton Showers?

hadronization?

80h
tt
p
s
:/
/a

rx
iv

.o
rg

/p
d
f/

2
1
0
4
.0

5
0
5
9
.p

d
f

Current status from experiments

▸ In the last ~5 years the modelling for the needs for HL-LHC have evolved, in

large part following some of the “recipes” we listed

▹ Infrastructure changes: datalake, fewer copies of data on storage

▹ Physics changes: smaller data formats, less CPU for analysis

81

Missing factors

~2-3x

(and in some

cases we are

already there)

Conclusions
▸ In this (long) walk I tried to show you how the complexity of

Computing and Software systems for High Energy Physics has

dramatically increased in the last ~30 years, becoming an

integral part of the planning for new experiments, … and their

cost!

▸ In parallel, new skills and competencies have become more

and more important. We now need more and more “physicists

with CS skills”

▸ It is an interesting time to be in the Computing and Software for

HEP

▹ A complex task, no trivial solutions  we need new ideas

▹ At the forefront of technology (big data, quantum, data-lake)
82

