

Accelerator Technologies II

D. Schulte, CERN

D. Schulte, Accelerator Technologies CERN-Fermilab HCP Summer School 2021

Considered High Energy Frontier Collider

Circular colliders:

- HL-LHC
- FCC (Future Circular Collider)
 - FCC-hh: 100 TeV proton-proton cms energy, ion operation possible
 - FCC-ee: First step 90-350 GeV lepton collider
 - FCC-he: Lepton-hadron option
- CEPC / SppC (Circular Electron-positron Collider/Super Proton-proton Collider)
 - CepC : e⁺e⁻ 90 240 GeV cms
 - SppC : pp 70 TeV cms

Linear colliders

- ILC (International Linear Collider): e⁺e⁻ 250 GeV cms energy, Japan considers hosting project
- CLIC (Compact Linear Collider): e⁺e⁻ 380 GeV 3 TeV cms energy (also lower possible), CERN hosts collaboration

Other options

- Muon collider, past effort in US, new interest also in Europe and Asia
- Plasma acceleration in linear collider
- Photon-photon collider
- LHeC

Proposed Colliders with at least a CDR

Project	Туре	Energy [TeV]	Int. Lumi. [a ⁻¹]	Oper. Time [y]	Power [MW]	Cost
ILC	ee	0.25	2	11	129 (upgr. 150-200)	4.8-5.3 GILCU + upgrade
		0.5	4	10	163 (204)	7.8 GILCU
		1.0			300	?
CLIC	ee	0.38	1	8	168	5.9 GCHF
		1.5	2.5	7	(370)	+5.1 GCHF
		3	5	8	(590)	+7.3 GCHF
CEPC	ee	0.091+0.16	16+2.6		149	5 G\$
		0.24	5.6	7	266	-
FCC-ee	ee	0.091+0.16	150+10	4+1	259	10.5 GCHF
		0.24	5	3	282	-
		0.365 (+0.35)	1.5 (+0.2)	4 (+1)	340	+1.1 GCHF
LHeC	ер	60 / 7000	1	12	(+100)	1.75 GCHF
FCC-hh	рр	100	30	25	580 (550)	17 GCHF (+7 GCHF)
HE-LHC D. Schulte, A	pp	27	20	20		7.2 GCHF

Tablesalasiaa

CERI

CERN-Fermilab HCP Summer School 2021

European Strategy in a Nutshell

Highest priority is HL-LHC

Highest priority for next collider is a higgs factory

• currently four candidates FCC-ee, CEPC, ILC or CLIC

Beate will give much more detail in the next talk

Japan community is considering to host ILC, but process is very slow China community is considering to host CEPC, but progress very slow CERN aims to have FCC-ee as next project and later FCC-hh, decision only at next European strategy

But

- No consensus which is the best higgs factory
- No consensus that FCC-ee and ILC/CEPC would be complementary enough to justify both
- Prudently, prepare alternatives
 - e.g. muon collider

US unfortunately not pushing for the high-energy frontier, might hopefully change

• Muon collider has been mainly a US development

Future Lepton Colliders

D. Schulte, Accelerator Technologies CERN-Fermilab HCP Summer School 2021

High Energy Leptons: Overview

Past circular and linear electron positron colliders

- LEP (circular) centre-of-mass energy of 205 GeV
- SLC (linear) reached 92 GeV

Studies of future electron-positron colliders

- ILC, superconducting linear collider
- CLIC, normal conducting linear collider
- FCC-ee and CEPC, circular collider
- A (circular) muon collider is being studied

LHeC and FCC-eh quickly covered Plasma technology is being considered for linear collider, but long way to go Gamma-gamma collisions are also being considered

Electron-positron Luminosity

1000 FCC-ee **Energy dependence:** CEPC ILC-up. L [10³⁴cm⁻²s⁻¹] At low energies circular colliders look good 100 CLIC-up: ····· Reduction at high energy due to synchrotron radiation 10 At high energies linear colliders excel Luminosity per beam power roughly constant 1000 100 E_{cm} [GeV] $L \mu P_{synrad} E_{cm}^{-3.5}$ $L \mid P_{RF}$

Note: The typical higgs factory energies are close to the cross over in luminosity Linear collider have polarised beams (80% e⁻, ILC also 30% e⁺) and beamstrahlung

• All included in the physics studies The picture is much clearer at lower or higher energies

Energy Limit

Circular collider

- Accelerate beam in many turns
- Let beam collide many times
- But synchrotron radiation

At LEP2 lost 2.75 GeV/turn for E = 105 GeV

Linear electron-positron collider

- Essentially no synchrotron radiation
- But have to accelerate beams in one pass
- and only collide once, so small beams

Or use heavier particles in **circular collider Muons** are 200 times heavier than electrons But they have a short lifetime (2.2 µs)

SLC: The only Linear Collider that existed

Built to study the Z⁰ and demonstrate linear collider feasibility

Energy = 92 GeV Luminosity = 2e30

Has all the features of a 2nd gen. LC except both e+ and e- used the same linac

A 10% prototype!

D. Schulte, Accelerator Technologies

ILC Scenarios

Waiting for Japan to make a commitment

- Site identified and being investigated
- But executive not yet endorsed project
- Process is going on for many years

Baseline running example Note: contains up to 500 GeV, which is not part of current baseline proposal

Examples of ILC and CLIC Main Parameters

Parameter	Symbol [unit]	SLC	ILC	CLIC	CLIC
Centre of mass energy	E _{cm} [GeV]	92	250	380	3000
Luminosity	L [10 ³⁴ cm ⁻² s ⁻¹]	0.0003	1.35	1.5	6
Luminosity in peak	L _{0.01} [10 ³⁴ cm ⁻² s ⁻¹]	0.0003	1	0.9	2
Gradient	G [MV/m]	20	31.5	72	100
Particles per bunch	N [10 ⁹]	37	20	5.2	3.72
Bunch length	σ _z [μm]	1000	300	70	44
Collision beam size	σ _{x,y} [nm/nm]	1700/600	516/ <mark>7.7</mark>	149/ <mark>2.9</mark>	40/ <mark>1</mark>
Vertical emittance	ε _{x,y} [nm]	3000	35	30	20*
Bunches per pulse	n _b	1	1312	352	312
Bunch distance	Δz [mm]	-	554	0.5	0.5
Repetition rate	f _r [Hz]	120	5	50	50

ILC Cavities

Superconducting cavity (Ni at 2 K) Standing wave structure RF frequency is 1.3 GHz, 23 cm wavelength Length is 9 cells = 4.5 wavelengths = 1 m

Pulsed operation: 5 x 1.6 ms pulses per second Gradient is 31.5 MV/m

In rings typically

- no pulsing
- lower frequencies (400 MHZ in LHC)
- lower gradient (O(<20 MV/m))

ILC Gradient Limitations

Theoretical gradient limit is 50-60 MV/m

- But can quench at lower gradient
- or Q value decreases

Cavities have different performancies

ILC Cavity Treatment

Control of material Avoid defects Ensure high quality

Electropolishing fill with H₂SO₄, apply current to remove thin surface layer

Novel process found (FNAL): **Nitrogen infusion** Fill cavity at 120°C for a day with low pressure of N₂

D. Schulte, Accelerator Technologies

5 RF pulses of 1.6 ms per second (1312 bunches in 0.73 ms):

Because field leads to losses in the wall

- About 1 W/m
- With no pulsing losses would be O(100 W/m)

RF power in pulse: 5 MW / (5 x 0.73 ms) = O(1500 MW) = O (150 klystrons)

D. Schulte, Accelerator Technologies

CERN-Fermilab HCP Summer School 2021

Note: Cryogenics

Cavities have small losses

$$P_{loss} = const \frac{1}{Q_0} \quad G^2$$

About 1W/m

But cooling costly at low temperatures

Remember Carnot:

$$P_{cryo} = \frac{1}{h} \frac{T_{room} - T_{source}}{T_{source}} \land P_{loss}$$
$$P_{cryo} \gg 700 \land P_{loss}$$

The typical heat load of 1 W/m \Rightarrow about 1 kW/m for cryogenics

Average RF power: 1.6kW/m (3kW/m) Power into beam about 0.7kW/m

CLIC Staged Scenario

D. Schulte, Accelerator Technologies

CERN-Fermilab HCP Summer School 2021

CERI

CLIC Accelerating Structure

- 12 GHz, 23 cm long, normal conducting Loaded gradient 100 MV/m
- \Rightarrow Allows to reach higher energies
- \Rightarrow 140,000 structures at 3 TeV

But strong losses in the walls

- \Rightarrow 50 RF bursts per second
- \Rightarrow 240 ns, 60 MW, 312 bunches

D. Schulte, Accelerator Technologies

 \Rightarrow Power during pulse 8.5 x 10⁶ MW (3000 x ILC)

Power flow

- 1/3 lost in cavity walls
- 1/3 in filling the structure and into load
- 1/3 into the beam

Average RF power about 3 kW/m About 1 kW/m into beam

CLIC Gradient Limitations

CERN

Breakdowns (discharges during the RF pulse)

• Require $p \le 3 \ge 10^{-7} \text{ m}^{-1} \text{ pulse}^{-1}$

Structure design based on empirical constraints, not first principle

- Maximum surface field
- Maximum temperature rise
- Maximum power flow

R&D programme established gradient O(100 MV/m)

Shorter pulses have fewer breakdowns

CLIC Two-beam Module

1st module

80 % filling with accelerating structures 11 km for 380 GeV cms 50 km for 3 TeV

D. Schulte, Accelerator Technologies CERN-Fermilab HCP Summer School 2021

CLIC: The Basis

Luminosity and Parameter Drivers

Can re-write normal luminosity formula

$$\mathcal{L} = H_D \frac{N^2}{4\pi\sigma_x \sigma_y} n_b f_r$$

0

Need to ensure that one can achieve each parameter

D. Schulte, Accelerator Technologies

CERN-Fermilab HCP Summer School 2021

Note: Technology Transfer

The technology developed for linear colliders is useful for other fields, e.g.

- FELs (Examples: European X-FEL in Hamburg, LCLS at SLAC, SACLA in Japan, Swiss FEL, ...)
- Medical facilities
- Safety
- Industrial applications

Note: Gamma-gamma Collider Concept

Based on e⁻e⁻ collider

Collide electron beam with laser beam before the IP

Note: Plasma Accelertion

Plasma can be generated by electron beam, proton beam or laser beam

50 GV/m demonstrated with 42 GeV energy gain

I. Blumenfeld et al, Nature 445, p. 741 (2007)

- Practical solution for efficient acceleration of positrons has to be developed
- Efficiency and beam quality have severe challenges
- Strong plasma focusing is good for beam stability but generates synchrotron radiation
- Application in other fields seem promising, e.g. free electron laser

FCC-ee

D. Schulte, Accelerator Technologies CERN-Fermilab HCP Summer School 2021

FCC-ee

Electron-positron collider in the FCC-hh tunnel

Operation at different energies

Synchrotron radiation leads to strong dependence of beam current and luminosity on energy (100 MW limit)

Parameter	Z	WW	ZH	tt
E _{cm} [GeV]	91.2	160	240	365
l [mA]	1390	147	29	5.4
L [10 ³⁴ cm ⁻² s ⁻¹]	200	25	7	1.4
Years	4	1	3	4
Int. L. [ab ⁻¹]	2 x 78	2 x 3.5	2 x 2.7	2 x 0.18

Short beam lifetime requires top-up injection

vertical beam size O(30-70 nm)

D. Schulte, Accelerator Technologies

Top-up Injection

Beam lifetime is short (18-200 minutes)

- Bremsstrahlung
- Beamstrahlung

 $\tau_{ee} \propto \frac{1}{L \sigma_{ee} n_{ip}}$ Have to refill beam permanently $\Rightarrow \text{ top-up injection with booster ring}$ Booster ring
Collider ring

FCC-ee Operational Schedule

5 energy stages

Each year 8 months of operation / 4 months winter shutdown

hardware upgrades during shutdown

Only 1 year-long shutdown to got for top

FCC-ee Technologies

Cost effective magnets

Two-in-one design of dipoles and quadrupoles

Optimised windings to reduce cost and power consumption

Optimised RF cavities

Single cells at low energy:

- Low voltage but high current Four-cell cavities at high energy:
- Low current but high voltage High frequency at highest energies

Efficient klystrons, based on design ideas for CLIC

Muon Collider

D. Schulte, Accelerator Technologies CERN-Fermilab HCP Summer School 2021

Comparing Luminosity in MAP vs. CLIC

CLIC is at the limit of what one can do (decades of R&D)

• No obvious way to improve

Muon collider

Power efficient

- Luminosity per beam power increases with energy
- Site is **compact**
- 10 TeV comparable to 3 TeV CLIC **Staging** is natural
- acceleration by a factor of a few is done in rings
- Appears to promise cost effectiveness
- but need detailed study
 Other synergies exist (neutrino/higgs

Muon collider promises unique opportunity for a high-energy, high-luminosity lepton collider

Main challenge muons are not stable (2.2 μ s at rest)

Proton-driven Muon Collider Concept

The muon collider has been developed by the MAP collaboration mainly in the US Muon cooling demonstration by MICE in the UK, some effort on alternative mainly at INFN

Short, intense proton bunches to produce hadronic showers

then cooled by ionisation cooling in matter

Acceleration to collision energy

Protons produce pions Pions decay to muons

Not as mature as linear collider, but performing study tom make informed decision by 2025

Collision

Luminosity Goals

Target integrated luminosities

\sqrt{s}	$\int \mathcal{L} dt$
3 TeV	$1 {\rm ~ab^{-1}}$
$10 { m TeV}$	$10 {\rm ~ab^{-1}}$
$14 { m TeV}$	$20 {\rm ~ab^{-1}}$

Long-term development

Aim to have muon collider as option for the next European project (or in some other region), if required (e.g. higgs factory somewhere else)

Tentative target from MAP parar		led	Comparison: CLIC at 3 TeV: 28 MW			
Parameter	Unit	3 TeV	10 TeV	14 TeV		
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40		
Ν	10 ¹²	2.2	1.8	1.8		
f _r	Hz	5	5	5		
P _{beam}	MW	5.3	14.4	20		
С	km	4.5	10	14		
<Β> ε _L σ _E / Ε	т	7	10.5	10.5		
	MeV m	7.5	7.5	7.5		
	%	0.1	0.1	0.1		
σ _z	mm	5	1.5	1.07		
β	mm	5	1.5	1.07		
З	μm	25	25	25		
σ _{x,y}	σ _{x,y} μm		0.9	0.63		

Cooling Concept

energy loss

Limit muon decay, cavities with **high gradient in a magnetic field** tests much better than design **Compact integration** to minimise muon loss

Minimise betafunction with **strongest solenoids (40+ T)** 32 T achieved, 40+ T planned

$$\frac{d\epsilon_{\perp}}{ds} = -\frac{1}{(v/c)^2} \frac{dE}{ds} \frac{\epsilon_{\perp}}{E} + \frac{1}{2} \frac{1}{(v/c)^3} \left(\frac{14 \,\mathrm{MeV}}{E}\right)^2 \frac{\beta\gamma}{L_R}$$

D. Schulte, Accelerator Technologies

Cooling: The Emittance Path

Technologies

40

Cooling Challenges and Status

Cavities with very high accelerating gradient in strong magnetic field

Very strong solenoids (> 30 T) for the final cooling

simplified: Luminosity is proportional to the field

Integrated system test

MuCool: >50 MV/m in 5 T field

Two solutions

- Copper cavities filled with hydrogen
- Be end caps

Tachnalogias

NHFML 32 T solenoid with lowtemperature HTS

We would like to push even further MICE (UK)

Plans for 40+ T exist

MICE (in the UK)

More particles at smaller amplitude after absorber is put in place

Principle of ionisation cooling has been demonstrated

D. Schulte, Accelerator Technologies litude [mm]

Nature volume 578, pages 53-59 (2020)

More complete experiment with higher statistics, more than one stage required

Integration of magnets, RF, absorbers, vacuum is engineering challenge

LHeC/FCC-eh

LHeC / FCC-eh

D. Schulte, Accelerator Technologies

Conclusion and Thanks

- Touched only a small part of the exciting accelerator technologies
- Quite some work ahead to develop and the future colliders
- ILC and CLIC are mature
- FCC-ee and CEPC are being developed
 - FCC-ee for next European Strategy
 - In the long run FCC-hh can follow
- Muon collider is less mature but would offers a long-term lepton path
- Plasma-based colliders are more speculative at this moment
- LHeC would offer electron proton collisions

Many thanks to Reende Steerenberg, Steinar Stapnes, Lucio Rossi, Mark Palmer, Ralph Assmann, Jean-Pierre Delahaye, Lucie Linssen, Steffen Doebert, Alexej Grudiev, Frank Tecker, Walter Wuensch, Stephane Poss, Jan Strube, Joerg Wenninger, M. Benedikt, Frank Zimmermann, Bernhard Holzer, Roberto Kersevan, Ph. Lebrun, ...

If you can look into the seeds of time, And say which grain was (Shakespeare)

Reserve

ERI

D. Schulte, Accelerator Technologies CERN-Fermilab HCP Summer School 2021

CLIC Test Facility (CTF3)

Accelerator

CERN-Fermilab HCP Summer School 2021

Drive Beam Combination in CTF3

Note: Efficiencies RF to drive beam >95% Drive beam to RF >95%

Total efficiency wall plug to main beam is about 10%

LHeC / FCC-eh Parameters

parameter [unit]	LHeC CDR	ep at HL-LHC	ep at HE-LHC	FCC-he
E_p [TeV]	7	7	12.5	50
$E_e \; [\text{GeV}]$	60	60	60	60
\sqrt{s} [TeV]	1.3	1.3	1.7	3.5
bunch spacing [ns]	25	25	25	25
protons per bunch $[10^{11}]$	1.7	2.2	2.5	1
$\gamma \epsilon_p \; [\mu \mathrm{m}]$	3.7	2	2.5	2.2
electrons per bunch $[10^9]$	1	2.3	3.0	3.0
electron current [mA]	6.4	15	20	20
IP beta function β_p^* [cm]	10	7	10	15
hourglass factor H_{geom}	0.9	0.9	0.9	0.9
pinch factor H_{b-b}	1.3	1.3	1.3	1.3
proton filling H_{coll}	0.8	0.8	0.8	0.8
luminosity $[10^{33} \text{cm}^{-2} \text{s}^{-1}]$	1	8	12	15

EDMS 17979910 FCC-ACC-RPT-0012 V1.0, 6 April, 2017, "A Baseline for the FCC-he"

D. Schulte, Accelerator Technologies

LHeC and FCC-eh Reports

Design of LHeC documented in report 2012, updated planned next year Design for FCC-eh is similar, except of interaction region

D. Schulte, Accelerator Technologies

1	lournal of Dhygiog C
	Journal of Physics G
-	Nuclear and Particle Physics
of Papase 5 Notices and Publick Papase	
1	Volume 39 Number 7 July 2012 Article 075001
ŧ	A Large Hadron Electron Collider at CERN
VE 36.807 07600	Report on the Physics and Design Concepts for Machine and Defector (Jaco Stady Group
1000	Line Stady Group
No.	iopscience.org/jphysg
	IOP Publishing
CERN-OPEN-2 LBrC-Noze-2021 Genera, June 22	9/9-mm 5401 GEN 5, 2018
	1741
	LHO
A Hig	gs Facility Resolving the Substructure of Matter
	Update on the 2012 LHeC Report e Physics and Design Concepts for Machine and Detector
on un	
	LHeC Collaboration
	-
	Substantian 1994 (J

Key FCC-ee Parameters

parameter	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.1	0.44	2.0	10.9
long. damping time [turns]	1281	235	70	20
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geom. emit. [nm]	0.27	0.28	0.63	1.46
vert. geom. emit. [pm]	1.0	1.7	1.3	2.9
bunch length w. SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5
L per IP [10 ³⁴ cm ⁻² s ⁻¹]	>200	>25	>7	>1.4
lifetime Bhabha / BS [min]	68 / >200	49 / >1000	38 / 18	40 / 18

FCC-ee Layout

Different layout options are being studied Different optimisation to FCC-hh but maintaining FCC-hh

Lowout		IP	Chatta	circumference	Arc radius of	short arc	long arc	straight sections			
Layout	Layout		Silaris	circumerence	curvature	A-B, F-G, G-H,	B-D, D-F,	A, G	B, F, H, L	D, J	
	~CDR			97750	13329	4448	16489	1.4	1.4	2.8	
	17.08	2	12	96109	12922	5782	14517	1.4	1.4	3.25	
	19.03			91350	12380	3864	15582	1.36	1.36	2.69	
	20.03	4	8	95713	13058	10256	10256	1.45	2.0	1.45	(kn