Towards a realistic Si digitization for the µ-collider detector

Simone (LBL), Paolo, Alessio (Padova)

Pixel digitization

- Baseline starting model from CMS pixel digitization (Twiki)
- Main effects included so far:
 - Split of G4 charge (1 value per volume per particle) into e⁻ holes creation along particle path with energy deposition fluctuations
 - Lorentz angle effects
 - Diffusion of charge when drifting
 - Front-End (FE) electronics threshold and noise (on signal)

- Main effects not yet included (very much ok for a start):
 - Discretization of measured charge (finite resolution, 4 bits in current FE chips)
 - Threshold dispersion (not all pixels can be tuned exactly at the same thr)
 - Parametrized time measurement digitization \rightarrow right now just true G4 timing
 - Main branch adopts a simplified approach with 1 Geant4 deposit creating 1 cluster of pixels \rightarrow no overlap of particles on the same hit is simulated
 - Ok for initial studies, its importance should be studied eventually

Code status

- Digitization code on github (branch master)
 - Contains the fully validated code **used in this presentation**
 - Branch sidigi-dev of LCTuple packages to include detailed cluster and individual pixel hit information, when enabled (see full diff on github)
- Digitization code has also an experimental branch
 - Split digitization and cluster reconstruction properly
 → allows multiple particle to create merged pixel clusters
 - Implements multi-threaded space-time based clustering!

- Simulated hits are placed in space and time
- We can take a slice of space and time, with simulated hits sorted according to the time
- The volume of space-time is partitioned according to the ladders (multi threading)
- All the simulated hits in a ladder must be aggregated with a suitable algorithm

Digitization parameters / changes

- Diffusion formula/parameter changed compared to original model
 - Replaced with something I'm more familiar with (and widely used in literature)
- Default FE electronics threshold and noise set to something more in-line with modern FE pixel electronics (and a bit beyond that)
 - this is necessary since the super-thin (50µm thickness vs 100-250µm used for LHC/HL-LHC detectors) silicon sensors in our simulation
 - Note: thin sensors useful for accurate time measurements as well
- In the future, study performance dependence to determine technology requirements!
- Main parameters for reference:

Parameter	Branch: master	Notes
Threshold	500 e ⁻	Consistent with a bit beyond state-of-art electronics
Diffusion	0.07	Assuming reasonable operating depletion voltages
Electronic noise	80 e [.]	Consistent with a bit beyond state-of-art electronics
Lorentz angle	0.8	To be x-checked
Cut on δ rays	30 keV	Speed vs accuracy
Segment length	5 µm	Speed vs accuracy

Validation

- Simple muon gun with E = 10 GeV, only spanning VXD BARREL
- Only running VXD barrel digitization, save results and modified LCTuple to store detailed information on individual pixel hits and clusters of them
- Roughly speaking expecting Landau with most probable value of ~4ke⁻ per minimum-ionizing particle (as the 10 GeV muon is)
 - One e-hole pair requires \sim 3.6 eV of ionization energy loss, \sim 80 e⁻-hole pairs / μ m
- Energy reconstructed from deposited charge vs true G4 deposit

Position determination

- Simple averaging of individual hits positions (note: 25 μm * sqrt(12) ~ 7 μm)
 - Future: use charge information of external pixels for slightly better accuracy
- Note: current smearing-based method assumed 5µm

6

Hits filtering

- Ultimately, would like to study discrimination based on released energy and cluster shapes of signal vs beam-induced background
- Below, the clear correlation of size vs theta for prompt muons
 - Simple geometrical effect: larger incidence angle on sensor \rightarrow longer path
 - Expect BIB to be quite different (see next)

Cluster size in Y direction vs θ

BIB simulation

- 100 single-µ events, 30 BIB bkg events (1% BIB)
 - Interested in BIB distribution overall, does not matter if digitized in single or multiple events at this stage (over multiple events requires less RAM)

Cluster size in Y direction vs $\boldsymbol{\theta}$

Simple size Y selection vs theta

Cut Efficiency	Loose	Tight
Single muon	99.4%	75.0%
Single muon + BIB	63.5%	42.9%

Cluster size in Y direction vs $\boldsymbol{\theta}$

Note: single-muon is uniform in cos(theta)

More discrimination..

- Some discrimination also from deposited energy, however:
 - Not enough for a plain cut
 - Need to be careful to not penalize low-βγ particles
- Still, could be a useful quantity in pre-tracking filtering for a first pass
 - TODO: will explore combining this and size information in a smarter way

Even more...

- Some discrimination also on size X
 - Unphysically long clusters for BIB...

Cluster size in X direction

Future TODO

- Determine cluster energy/shape discrimination (better..)
- Further tune some of the parameters and study what is nice vs required \rightarrow requirements for R&D
- A few further developments to the digitization code as e.g.:
 - Realistic charge measurement resolution, implement threshold dispersion
 - Implement digitization of time measurement (parametric)
 - Run/validate realistic digi for VXD endcap as well
 - Create new job config and evaluate running time on BIB to propose a viable config
 - ... and much more
- Main message: promising additional separation power from cluster shapes
- Two more people ramping up at LBL (Elodie postdoc and Rohit undergraduate student) will help in the development and studies

Backup

• Single pixel collected charge above threshold (500 e⁻)

