

RD53A PLANAR SP CHAIN UPDATE

MATTHIAS HAMER, FLORIAN HINTERKEUSER

RD53A PLANAR SERIAL POWERING CHAIN – REVISED SERVICES

- Using new flexes, first 10 modules have been built (1 digital, 9 thick quads)
 - Yield from quick reception test promising: 7 thick quads fully working (SPQ11-16, SPQ18)
 - Completed module characterisation (SLDO IV, Sensor IV, FE-characterisation) on all 10 quads
- First 8 Quads loaded on stave, "worst" operational module SPQ17 left out
 - SLDO IV curves of all modules in serial chain measured
 - Measured threshold distributions & general chip functionality for all FE after tuning to 2ke & 1ke (LIN & DIFF only) & required startup current for all modules
 - Current headroom measurements currently ongoing

Quads SPQ10-SPQ16 & SPQ18 loaded on stave, connected to new revision of stave flex and EoS-Card (not shown).

RD53A PLANAR SERIAL POWERING CHAIN – MODULE YIELD

- All chips on-stave but one are alive & communicating
 - SPQ10_FE0 has faulty SLDO, can't communicate
 - SPQ13_FE1 analog dead after tuning to 1ke

- All chips on-stave but one are alive & communicating
- SPQ10_FE0 has faulty SLDO, can't communicate
- Most modules require $I_{in} \ge 5A$ to fully start
 - First FE start around 3A
- Some require up to 6A for startup
- > RD53A specific problem

- For all modules: tuning to 2ke / 1ke, measure threshold distr., noise, in-time-threshold in SP chain
 - Compare with results from module reception tests
 - Track for different HV schemes, chain current, chain length [...]

- For all modules: tuning to 2ke / 1ke, measure threshold distr., noise, in-time-threshold in SP chain
 - Compare with results from module reception tests
 - Track for different HV schemes, chain current, chain length [...]

- For all modules: tuning to 2ke / 1ke, measure threshold distr., noise, in-time-threshold in SP chain
 - Compare with results from module reception tests
 - Track for different HV schemes, chain current, chain length [...]

- For all modules: tuning to 2ke / 1ke, measure threshold distr., noise, in-time-threshold in SP chain
 - Compare with results from module reception tests
 - Track for different HV schemes, chain current, chain length [...]

RD53A PLANAR SERIAL POWERING CHAIN – MODULE IV CURVES

- Measure SLDO IV curve for each quad in serial chain & compare with bench test / expectation
 - From flex loading expect: $V_{ofs} = 0.9 V$, $V_{in} \approx 1.5 V$ @ lin = 4.5 A, $V_{DDD} = V_{DDA} = 1.2 V$
- Measure V_{in}, V_{Out}, V_{ref}, V_{ofs} using on-chip MUX (corrected by GND offset)
 - In addition current through Rext for on-module current sharing
- Expectation: constant V_{ref}, V_{out}, V_{ofs}; Input slope from spice
 - using Vofs, slopes obtained in wafer probing when possible

RD53A PLANAR SERIAL POWERING CHAIN – MODULE IV CURVES

- Measured SLDO IV curve for each quad in serial chain
 - V_{IN_A,D} tied together on flex
 - > Fits on V_{in} in very good agreement
 - Slope fits expectation well
 - Offset too small
 - > known to be RD53A specific

SPQ13	Slope A	Offset A	Slope D	Offset D
FE0	0.1526 V/A	0.824 V	0.1525 V/A	0.8244 V
FE1	0.1524 V/A	0.828 V	0.153 V/A	0.826 V
FE2	0.1517 V/A	0.825 V	0.1511 V/A	0.828 V
FE3	0.153 V/A	0.825 V	0.1532 V/A	0.824 V

Spice	Full SPQ13
Slope	0.1512 V/A
Offset	0.916 V

- Tried to estimate on-module current distribution using voltage drop on slope resistors
- Current mirror ratio k from slope fit on waferprobing data
 - Not always usable probing data available
 - **Does not include dependency** of k on **input current** (k increases with I_{in})
 - > Both will improve significantly for RD53B
- Track current distribution through input IV
- This current distribution is an estimate based from observations, not a hard truth

- Tried to estimate on-module current distribution using voltage drop on slope resistors
- Current mirror ratio k from slope fit on waferprobing data

- Tried to estimate on-module current distribution using voltage drop on slope resistors
- Current mirror ratio k from slope fit on waferprobing data

- Estimate module current I_{mod} by scaling current through Rext with current mirror from wafer probing
- Plot I_{in} vs Δ(I_{mod}, I_{in})
 - Significant uncertainties O(%)
 - Large slope on SPQ18 unexpected
- In general: slope on Δ(I_{mod}, I_{in}) agrees with known slope on current mirror

- Tried to estimate on-module current distribution using voltage drop on slope resistors
- Current mirror ratio k from slope fit on waferprobing data

- Estimate module current I_{mod} by scaling current through Rext with current mirror from wafer probing
- Plot relative current sharing between
 SLDOs on a quad (ideal case: 12.5 %)
- Slope possibly explained by differing k(I_{in}) dependencies for each SLDO

RD53A PLANAR SERIAL POWERING CHAIN – MODULE CURRENT HEADROOM

- Find minimum required current module to keep module operational
- Baseline for SP Quads & common hybrid: Module @ 1.5 V, 1.1 A / chip (including headroom)
 -> ~ 4.4 A @ 1.5 V
- **Procedure**: Starting at a safe I_{in} (e.g. 6 A), run defined scan, reduce current, repeat
 - Scan used here: "random" trigger source scan (w/o source), all FE/flavours enabled
 - Track VDDAs / VIN_{Quad} on scope
 - Significant drop in both VIN & VDDA -> SLDO overload

- Starting at I_{in} = 6A, reducing in 100 mA steps
 - Once overload is reached, measure current through slope resistors
 - Decrease module current consumption by disabling parts of the chip -> does overload go away?

- Starting at I_{in} = 6A, reducing in 100 mA steps
 - Once overload is reached, measure current through slope resistors
 - Decrease module current consumption by disabling parts of the chip -> does overload go away?

- Starting at I_{in} = 6A, reducing in 100 mA steps
 - Once overload is reached, measure current through slope resistors
 - Decrease module current consumption by disabling parts of the chip -> does overload go away?

Quad	I _{in} overload / A	Module Voltage / V
SPQ11	3.8	1.4
SPQ12	3.4	1.34
SPQ13	3.6	1.37
SPQ14	3.4	1.35
SPQ15	3.5	1.36
SPQ18	3.5	1.37

- Starting at I_{in} = 6A, reducing in 100 mA steps
 - Once overload is reached, measure current through slope resistors
 - Decrease module current consumption by disabling parts of the chip -> does overload go away?
- For modules with higher overload current but same IV characteristic, larger current imbalance is expected
- This can not be observed with the currently available data

- open question for HV modules was the requirement of the low-ohmic off-mode, it was not clear that this is really required
 - high impedance off-mode leads to substantial forward bias on sensors in SP chain during interfills
 - measurements done by Anastasia et al. at CERN with irradiated modules have provided an indication for the level of that forward bias and the expected currents (see <u>Anastasia's presentation</u>) for more details
 - led to a discussion in the sensor group: no issue for sensors, but concerns were raised about risks to the analog FE
 - follow-up measurements done in Bonn (H. Krüger et al.) with an unirradiated ITkPixV1 Chip bonded to a planar Micron sensor:

- forward bias applied directly to the backside of the sensor through series resistor
- voltage is measured at the bias grid (PT biasing for the used sensor)
- worst case in the detector: < 3.5 nA per pixel
 - we don't expect to ever get there
 - Anastasia's measurements indicate a maximum current below that
- results still require some more understanding:
 - behaviour of bias-grid potential for small currents (I-V of PT grid?)
 - difference between simulation and measurement at large currents (averaging effect?)
- plan to repeat this measurement with the RD53A quad chain

SUMMARY & OUTLOOK

- Characterisation of the Bonn serial powering test setup is progressing
 - Results so far look promising
 - Did not encounter any surprises
- Can plug in digital ITkPix modules when available
 - First ITkPix V1.0 SP quad wirebonded yesterday, currently being tested
 - **Expect** ITkPix V1.1 chips for digital SP quads to arrive this week
 - Stave loaded with ITkPix SP quads ~ June
 - Setup with ITkPixV1.1 modules to be shipped to CERN for system tests with representative long services

THANK YOU

RD53A CURRENT MIRROR EXAMPLE

- Current mirror ratio smaller than expected
 - K depends on input current
 - R_{eff} gives only estimate on k

VINA / VIND DISTRIBUTION ON SPQ13

SPQ13	Slope A	Offset A	Slope D	Offset D
FE0	0.1526 V/A	0.824 V	0.1525 V/A	0.8244 V
FE1	0.1524 V/A	0.828 V	0.153 V/A	0.826 V
FE2	0.1517 V/A	0.825 V	0.1511 V/A	0.828 V
 FE3	0.153 V/A	0.825 V	0.1532 V/A	0.824 V

- Starting at I_{in} = 6A, reducing in 100 mA steps
 - Once overload is reached, measure current through slope resistors
 - Decrease module current consumption by disabling parts of the chip -> does overload go away?
 SPQ18 I_{SLDO,Analog} / A I_{SLDO,Digital} / A

Florian Hinterkeuser

Quad	I _{in} overload / A	Module Voltage / V
SPQ11	3.8	1.4
SPQ12	3.4	1.34
SPQ13	3.6	1.37
SPQ14	3.4	1.35
SPQ15	3.5	1.36
SPQ18	3.5	1.37

00040		
SPQ18	I _{SLDO,Analog} / A	I _{SLDO,Digital} / A
FE0	0.42	0.4
FE1	0.455	0.46
FE2	0.448	0.415
FE3	0.4	0.45
Total	3.44 A	Expected 3.5 A
SPQ11	I _{SLDO,Analog} / A	I _{SLDO,Digital} / A
FE0	0.442	0.441
FE0 FE1	0.442 0.43	0.441 0.439
FE0 FE1 FE2	0.442 0.43 0.363	0.441 0.439 0.45
FE0 FE1 FE2 FE3	0.442 0.43 0.363 0.42	0.441 0.439 0.45 0.411